Logotipo do repositório
 

Publicação:
RANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUS

dc.contributor.authorLima, Elizeu de S.
dc.contributor.authorSouza, Zigomar M. de
dc.contributor.authorOliveira, Stanley R. de M.
dc.contributor.authorMontanari, Rafael [UNESP]
dc.contributor.authorFarhate, Camila V. V. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
dc.date.accessioned2022-04-28T17:21:55Z
dc.date.available2022-04-28T17:21:55Z
dc.date.issued2022-01-01
dc.description.abstractEucalyptus (Eucalyptus urograndis) production has significantly advanced over the past few years in Brazil, especially with regard to acreage and productivity. Machine learning has made significant advances in most varied fields of agrarian sciences. In this context, this study aimed to use physicochemical variables of the soil as well as climatic and dendrometric variables of eucalyptus to predict its height using the random forest algorithm. The study was conducted in the municipality of Tres Lagoas, in Mato Grosso do Sul, Brazil. The original database consisted of 49 soil physicochemical variables collected at 0-0.20 m and 0.20-0.40 m, two dendrometric and four climatic variables, and one response variable related to the height of eucalyptus. A correlation matrix was applied to select variables. Furthermore, modeling was performed using the random forest algorithm, which performed well (r = 0.98, R-2 = 0.96) in predicting the height of eucalyptus. Overall, the most important variables to predict the eucalyptus plant height included diameter at breast height (DBH), phosphorus content (P1), gravimetric moisture (GM1) at a soil depth between 0.00 m and 0.20 m, and exchangeable aluminum content (Al2) between 0.20 m to 0.40 m of soil.en
dc.description.affiliationUniv Estadual Paulista, Fac Ciencias Agr & Vet, Jaboticabal, SP, Brazil
dc.description.affiliationUniv Estadual Campinas, Fac Engn Agr, Campinas, SP, Brazil
dc.description.affiliationEmbrapa Agr Digital, Campinas, SP, Brazil
dc.description.affiliationUniv Estadual Paulista, Fac Engn, Ilha Solteira, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Fac Ciencias Agr & Vet, Jaboticabal, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Fac Engn, Ilha Solteira, SP, Brazil
dc.format.extent11
dc.identifierhttp://dx.doi.org/10.1590/1809-4430-Eng.Agric.v42nepe20210153/2022
dc.identifier.citationEngenharia Agricola. Jaboticabal: Soc Brasil Engenharia Agricola, v. 42, 11 p., 2022.
dc.identifier.doi10.1590/1809-4430-Eng.Agric.v42nepe20210153/2022
dc.identifier.issn0100-6916
dc.identifier.urihttp://hdl.handle.net/11449/218601
dc.identifier.wosWOS:000778798600001
dc.language.isoeng
dc.publisherSoc Brasil Engenharia Agricola
dc.relation.ispartofEngenharia Agricola
dc.sourceWeb of Science
dc.subjectPhysicochemical variables of soil
dc.subjectmachine learning
dc.subjectsoil phosphorus content
dc.subjectsoil moisture
dc.subjectexchangeable aluminum
dc.titleRANDOM FOREST MODEL TO PREDICT THE HEIGHT OF EUCALYPTUSen
dc.typeArtigopt
dcterms.rightsHolderSoc Brasil Engenharia Agricola
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabalpt
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteirapt

Arquivos