Logotipo do repositório
 

Publicação:
Information Ranking Using Optimum-Path Forest

dc.contributor.authorAscencao, Nathalia Q. [UNESP]
dc.contributor.authorAfonso, Luis C. S.
dc.contributor.authorColombo, Danilo
dc.contributor.authorOliveira, Luciano
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionPetr Brasileiro SA
dc.contributor.institutionUniversidade Federal da Bahia (UFBA)
dc.date.accessioned2021-06-26T03:35:35Z
dc.date.available2021-06-26T03:35:35Z
dc.date.issued2020-01-01
dc.description.abstractThe task of learning to rank has been widely studied by the machine learning community, mainly due to its use and great importance in information retrieval, data mining, and natural language processing. Therefore, ranking accurately and learning to rank are crucial tasks. Context-Based Information Retrieval systems have been of great importance to reduce the effort of finding relevant data. Such systems have evolved by using machine learning techniques to improve their results, but they are mainly dependent on user feedback. Although information retrieval has been addressed in different works along with classifiers based on Optimum-Path Forest (OPF), these have so far not been applied to the learning to rank task. Therefore, the main contribution of this work is to evaluate classifiers based on Optimum-Path Forest, in such a context. Experiments were performed considering the image retrieval and ranking scenarios, and the performance of OPF-based approaches was compared to the well-known SVM-Rank pairwise technique and a baseline based on distance calculation. The experiments showed competitive results concerning precision and outperformed traditional techniques in terms of computational load.en
dc.description.affiliationUNESP Univ Estadual Paulista, Sch Sci, Bauru, SP, Brazil
dc.description.affiliationUFSCar Fed Univ Sao Carlos, Dept Comp, Sao Carlos, Brazil
dc.description.affiliationPetr Brasileiro SA, Cenpes, Rio De Janeiro, RJ, Brazil
dc.description.affiliationUFBA Fed Univ Bahia, Salvador, BA, Brazil
dc.description.affiliationUnespUNESP Univ Estadual Paulista, Sch Sci, Bauru, SP, Brazil
dc.description.sponsorshipPetrobras
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdPetrobras: 2014/00545-0
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2017/25908-6
dc.description.sponsorshipIdFAPESP: 2018/15597-6
dc.description.sponsorshipIdFAPESP: 2019/07665-4
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.description.sponsorshipIdCNPq: 307550/2018-4
dc.description.sponsorshipIdCNPq: 427968/2018-6
dc.format.extent8
dc.identifier.citation2020 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, 8 p., 2020.
dc.identifier.issn2161-4393
dc.identifier.urihttp://hdl.handle.net/11449/210714
dc.identifier.wosWOS:000626021408069
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2020 International Joint Conference On Neural Networks (ijcnn)
dc.sourceWeb of Science
dc.titleInformation Ranking Using Optimum-Path Foresten
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos