PsyBERTpt: A Clinical Entity Recognition Model for Psychiatric Narratives
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Mental disorders are among the most complex disorders to treat due to the scarcity of biomarkers that identify and quantify the severity of the disease, as is commonly available in other areas of medicine. The practice of psychiatry uses semi-structured and unstructured data to record the mental and behavioral states of patients, which are impressions of the physician about the patient, and therefore important information for prognosis. Most of this data lacks standardization, making it difficult to use for quantitative analysis through computational tools since clinical decision models are based on structured data. In this work, a team of psychiatrists and computer scientists developed a methodology based on Natural Language Processing to extract relevant information from admission clinical notes of a psychiatric emergency service. With the use of BERT, we developed psyBERTpt, a prediction model capable of extracting multiple types of information considered relevant to psychiatric practice.
Descrição
Palavras-chave
Clinical Entity Recognition, Clinical Narratives, Psychiatry
Idioma
Inglês
Citação
Proceedings - IEEE Symposium on Computer-Based Medical Systems, v. 2023-June, p. 672-677.




