Logotipo do repositório
 

Publicação:
A unified model for accelerating unsupervised iterative re-ranking algorithms

dc.contributor.authorPisani, Flavia
dc.contributor.authorPascotti Valem, Lucas [UNESP]
dc.contributor.authorGuimaraes Pedronette, Daniel Carlos [UNESP]
dc.contributor.authorS. Torres, Ricardo da
dc.contributor.authorBorin, Edson
dc.contributor.authorBreternitz, Mauricio
dc.contributor.institutionPontifical Catholic Univ Rio de Janeiro
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionNTNU Norwegian Univ Sci & Technol
dc.contributor.institutionISCTE IUL Lisbon Univ Inst
dc.date.accessioned2020-12-10T19:51:25Z
dc.date.available2020-12-10T19:51:25Z
dc.date.issued2020-03-03
dc.description.abstractDespite the continuous advances in image retrieval technologies, performing effective and efficient content-based searches remains a challenging task. Unsupervised iterative re-ranking algorithms have emerged as a promising solution and have been widely used to improve the effectiveness of multimedia retrieval systems. Although substantially more efficient than related approaches based on diffusion processes, these re-ranking algorithms can still be computationally costly, demanding the specification and implementation of efficient big multimedia analysis approaches. Such demand associated with the significant potential for parallelization and highly effective results achieved by recently proposed re-ranking algorithms creates the need for exploiting efficiency vs effectiveness trade-offs. In this article, we introduce a class of unsupervised iterative re-ranking algorithms and present a model that can be used to guide their implementation and optimization for parallel architectures. We also analyze the impact of the parallelization on the performance of four algorithms that belong to the proposed class: Contextual Spaces, RL-Sim, Contextual Re-ranking, and Cartesian Product of Ranking References. The experiments show speedups that reach up to 6.0x, 16.1x, 3.3x, and 7.1x for each algorithm, respectively. These results demonstrate that the proposed parallel programming model can be successfully applied to various algorithms and used to improve the performance of multimedia retrieval systems.en
dc.description.affiliationPontifical Catholic Univ Rio de Janeiro, Dept Informat, Rio De Janeiro, RJ, Brazil
dc.description.affiliationUniv Estadual Campinas, Inst Comp, Av Albert Einstein 1251,Cidade Univ, Campinas, SP, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Stat Appl Math & Comp, Rio Claro, SP, Brazil
dc.description.affiliationNTNU Norwegian Univ Sci & Technol, Dept ICT & Nat Sci, Alesund, Norway
dc.description.affiliationISCTE IUL Lisbon Univ Inst, ISTAR IUL, Lisbon, Portugal
dc.description.affiliationUnespSao Paulo State Univ, Dept Stat Appl Math & Comp, Rio Claro, SP, Brazil
dc.description.sponsorshipAdvanced Micro Devices
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipFundo de Apoio ao Ensino, a Pesquisa e Extensao, Universidade Estadual de Campinas
dc.description.sponsorshipIdCNPq: 307560/2016-3
dc.description.sponsorshipIdCNPq: 484254/2012-0
dc.description.sponsorshipIdCNPq: 308194/2017-9
dc.description.sponsorshipIdCAPES: 88881.145912/2017-01
dc.description.sponsorshipIdFAPESP: 2013/50155-0
dc.description.sponsorshipIdFAPESP: 2013/50169-1
dc.description.sponsorshipIdFAPESP: 2014/50715-9
dc.description.sponsorshipIdFAPESP: 2013/08645-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2015/24494-8
dc.description.sponsorshipIdFAPESP: 2016
dc.format.extent24
dc.identifierhttp://dx.doi.org/10.1002/cpe.5702
dc.identifier.citationConcurrency And Computation-practice & Experience. Hoboken: Wiley, v. 32, n. 14, 24 p., 2020.
dc.identifier.doi10.1002/cpe.5702
dc.identifier.issn1532-0626
dc.identifier.urihttp://hdl.handle.net/11449/196639
dc.identifier.wosWOS:000517769800001
dc.language.isoeng
dc.publisherWiley-Blackwell
dc.relation.ispartofConcurrency And Computation-practice & Experience
dc.sourceWeb of Science
dc.subjectGPGPU
dc.subjectimage re-ranking model
dc.subjectmultimedia retrieval
dc.subjectOpenCL
dc.subjectparallel computing
dc.titleA unified model for accelerating unsupervised iterative re-ranking algorithmsen
dc.typeArtigo
dcterms.licensehttp://olabout.wiley.com/WileyCDA/Section/id-406071.html
dcterms.rightsHolderWiley-Blackwell
dspace.entity.typePublication
unesp.author.orcid0000-0002-3833-9072[2]
unesp.author.orcid0000-0003-1783-4231[5]
unesp.author.orcid0000-0003-1752-6255[6]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentMatemática - IGCEpt

Arquivos