Publicação: A unified model for accelerating unsupervised iterative re-ranking algorithms
dc.contributor.author | Pisani, Flavia | |
dc.contributor.author | Pascotti Valem, Lucas [UNESP] | |
dc.contributor.author | Guimaraes Pedronette, Daniel Carlos [UNESP] | |
dc.contributor.author | S. Torres, Ricardo da | |
dc.contributor.author | Borin, Edson | |
dc.contributor.author | Breternitz, Mauricio | |
dc.contributor.institution | Pontifical Catholic Univ Rio de Janeiro | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | NTNU Norwegian Univ Sci & Technol | |
dc.contributor.institution | ISCTE IUL Lisbon Univ Inst | |
dc.date.accessioned | 2020-12-10T19:51:25Z | |
dc.date.available | 2020-12-10T19:51:25Z | |
dc.date.issued | 2020-03-03 | |
dc.description.abstract | Despite the continuous advances in image retrieval technologies, performing effective and efficient content-based searches remains a challenging task. Unsupervised iterative re-ranking algorithms have emerged as a promising solution and have been widely used to improve the effectiveness of multimedia retrieval systems. Although substantially more efficient than related approaches based on diffusion processes, these re-ranking algorithms can still be computationally costly, demanding the specification and implementation of efficient big multimedia analysis approaches. Such demand associated with the significant potential for parallelization and highly effective results achieved by recently proposed re-ranking algorithms creates the need for exploiting efficiency vs effectiveness trade-offs. In this article, we introduce a class of unsupervised iterative re-ranking algorithms and present a model that can be used to guide their implementation and optimization for parallel architectures. We also analyze the impact of the parallelization on the performance of four algorithms that belong to the proposed class: Contextual Spaces, RL-Sim, Contextual Re-ranking, and Cartesian Product of Ranking References. The experiments show speedups that reach up to 6.0x, 16.1x, 3.3x, and 7.1x for each algorithm, respectively. These results demonstrate that the proposed parallel programming model can be successfully applied to various algorithms and used to improve the performance of multimedia retrieval systems. | en |
dc.description.affiliation | Pontifical Catholic Univ Rio de Janeiro, Dept Informat, Rio De Janeiro, RJ, Brazil | |
dc.description.affiliation | Univ Estadual Campinas, Inst Comp, Av Albert Einstein 1251,Cidade Univ, Campinas, SP, Brazil | |
dc.description.affiliation | Sao Paulo State Univ, Dept Stat Appl Math & Comp, Rio Claro, SP, Brazil | |
dc.description.affiliation | NTNU Norwegian Univ Sci & Technol, Dept ICT & Nat Sci, Alesund, Norway | |
dc.description.affiliation | ISCTE IUL Lisbon Univ Inst, ISTAR IUL, Lisbon, Portugal | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Stat Appl Math & Comp, Rio Claro, SP, Brazil | |
dc.description.sponsorship | Advanced Micro Devices | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Fundo de Apoio ao Ensino, a Pesquisa e Extensao, Universidade Estadual de Campinas | |
dc.description.sponsorshipId | CNPq: 307560/2016-3 | |
dc.description.sponsorshipId | CNPq: 484254/2012-0 | |
dc.description.sponsorshipId | CNPq: 308194/2017-9 | |
dc.description.sponsorshipId | CAPES: 88881.145912/2017-01 | |
dc.description.sponsorshipId | FAPESP: 2013/50155-0 | |
dc.description.sponsorshipId | FAPESP: 2013/50169-1 | |
dc.description.sponsorshipId | FAPESP: 2014/50715-9 | |
dc.description.sponsorshipId | FAPESP: 2013/08645-0 | |
dc.description.sponsorshipId | FAPESP: 2014/12236-1 | |
dc.description.sponsorshipId | FAPESP: 2015/24494-8 | |
dc.description.sponsorshipId | FAPESP: 2016 | |
dc.format.extent | 24 | |
dc.identifier | http://dx.doi.org/10.1002/cpe.5702 | |
dc.identifier.citation | Concurrency And Computation-practice & Experience. Hoboken: Wiley, v. 32, n. 14, 24 p., 2020. | |
dc.identifier.doi | 10.1002/cpe.5702 | |
dc.identifier.issn | 1532-0626 | |
dc.identifier.uri | http://hdl.handle.net/11449/196639 | |
dc.identifier.wos | WOS:000517769800001 | |
dc.language.iso | eng | |
dc.publisher | Wiley-Blackwell | |
dc.relation.ispartof | Concurrency And Computation-practice & Experience | |
dc.source | Web of Science | |
dc.subject | GPGPU | |
dc.subject | image re-ranking model | |
dc.subject | multimedia retrieval | |
dc.subject | OpenCL | |
dc.subject | parallel computing | |
dc.title | A unified model for accelerating unsupervised iterative re-ranking algorithms | en |
dc.type | Artigo | |
dcterms.license | http://olabout.wiley.com/WileyCDA/Section/id-406071.html | |
dcterms.rightsHolder | Wiley-Blackwell | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0002-3833-9072[2] | |
unesp.author.orcid | 0000-0003-1783-4231[5] | |
unesp.author.orcid | 0000-0003-1752-6255[6] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claro | pt |
unesp.department | Matemática - IGCE | pt |