Logo do repositório

Layer-selective deep representation to improve esophageal cancer classification

dc.contributor.authorSouza, Luis A.
dc.contributor.authorPassos, Leandro A.
dc.contributor.authorSantana, Marcos Cleison S. [UNESP]
dc.contributor.authorMendel, Robert
dc.contributor.authorRauber, David
dc.contributor.authorEbigbo, Alanna
dc.contributor.authorProbst, Andreas
dc.contributor.authorMessmann, Helmut
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.authorPalm, Christoph
dc.contributor.institutionEspírito Santo Federal University
dc.contributor.institutionUniversity of Wolverhampton
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionOstbayerische Technische Hochschule Regensburg (OTH Regensburg)
dc.contributor.institutionUniversity Hospital Augsburg
dc.date.accessioned2025-04-29T20:16:28Z
dc.date.issued2024-11-01
dc.description.abstractAbstract: Even though artificial intelligence and machine learning have demonstrated remarkable performances in medical image computing, their accountability and transparency level must be improved to transfer this success into clinical practice. The reliability of machine learning decisions must be explained and interpreted, especially for supporting the medical diagnosis. For this task, the deep learning techniques’ black-box nature must somehow be lightened up to clarify its promising results. Hence, we aim to investigate the impact of the ResNet-50 deep convolutional design for Barrett’s esophagus and adenocarcinoma classification. For such a task, and aiming at proposing a two-step learning technique, the output of each convolutional layer that composes the ResNet-50 architecture was trained and classified for further definition of layers that would provide more impact in the architecture. We showed that local information and high-dimensional features are essential to improve the classification for our task. Besides, we observed a significant improvement when the most discriminative layers expressed more impact in the training and classification of ResNet-50 for Barrett’s esophagus and adenocarcinoma classification, demonstrating that both human knowledge and computational processing may influence the correct learning of such a problem. Graphical abstract: (Figure presented.)en
dc.description.affiliationDepartment of Informatics Espírito Santo Federal University
dc.description.affiliationCMI Lab School of Engineering and Informatics University of Wolverhampton
dc.description.affiliationDepartment of Computing São Paulo State University
dc.description.affiliationRegensburg Medical Image Computing (ReMIC) Ostbayerische Technische Hochschule Regensburg (OTH Regensburg)
dc.description.affiliationDepartment of Gastroenterology University Hospital Augsburg
dc.description.affiliationUnespDepartment of Computing São Paulo State University
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipAlexander von Humboldt-Stiftung
dc.description.sponsorshipEngineering and Physical Sciences Research Council
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236- 1
dc.description.sponsorshipIdFAPESP: 2016/19403-6
dc.description.sponsorshipIdFAPESP: 2017/04847-9
dc.description.sponsorshipIdFAPESP: 2019/08605-5
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.description.sponsorshipIdAlexander von Humboldt-Stiftung: BEX 0581-16-0
dc.description.sponsorshipIdEngineering and Physical Sciences Research Council: EP/T021063/1
dc.format.extent3355-3372
dc.identifierhttp://dx.doi.org/10.1007/s11517-024-03142-8
dc.identifier.citationMedical and Biological Engineering and Computing, v. 62, n. 11, p. 3355-3372, 2024.
dc.identifier.doi10.1007/s11517-024-03142-8
dc.identifier.issn1741-0444
dc.identifier.issn0140-0118
dc.identifier.scopus2-s2.0-85195390128
dc.identifier.urihttps://hdl.handle.net/11449/309738
dc.language.isoeng
dc.relation.ispartofMedical and Biological Engineering and Computing
dc.sourceScopus
dc.subjectBarrett’s esophagus detection
dc.subjectConvolutional neural networks
dc.subjectDeep learning
dc.subjectMultistep training
dc.titleLayer-selective deep representation to improve esophageal cancer classificationen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-7060-6097[1]

Arquivos

Coleções