Publicação:
ECG arrhythmia classification based on optimum-path forest

dc.contributor.authorLuz, Eduardo José Da S.
dc.contributor.authorNunes, Thiago M.
dc.contributor.authorDe Albuquerque, Victor Hugo C.
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.authorMenotti, David
dc.contributor.institutionComputing Department
dc.contributor.institutionTeleinformatic Engeneering Department
dc.contributor.institutionPost-Graduate Program in Applied Informatics
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:29:48Z
dc.date.available2014-05-27T11:29:48Z
dc.date.issued2013-07-01
dc.description.abstractAn important tool for the heart disease diagnosis is the analysis of electrocardiogram (ECG) signals, since the non-invasive nature and simplicity of the ECG exam. According to the application, ECG data analysis consists of steps such as preprocessing, segmentation, feature extraction and classification aiming to detect cardiac arrhythmias (i.e.; cardiac rhythm abnormalities). Aiming to made a fast and accurate cardiac arrhythmia signal classification process, we apply and analyze a recent and robust supervised graph-based pattern recognition technique, the optimum-path forest (OPF) classifier. To the best of our knowledge, it is the first time that OPF classifier is used to the ECG heartbeat signal classification task. We then compare the performance (in terms of training and testing time, accuracy, specificity, and sensitivity) of the OPF classifier to the ones of other three well-known expert system classifiers, i.e.; support vector machine (SVM), Bayesian and multilayer artificial neural network (MLP), using features extracted from six main approaches considered in literature for ECG arrhythmia analysis. In our experiments, we use the MIT-BIH Arrhythmia Database and the evaluation protocol recommended by The Association for the Advancement of Medical Instrumentation. A discussion on the obtained results shows that OPF classifier presents a robust performance, i.e.; there is no need for parameter setup, as well as a high accuracy at an extremely low computational cost. Moreover, in average, the OPF classifier yielded greater performance than the MLP and SVM classifiers in terms of classification time and accuracy, and to produce quite similar performance to the Bayesian classifier, showing to be a promising technique for ECG signal analysis. © 2012 Elsevier Ltd. All rights reserved.en
dc.description.affiliationUniversidade Federal de Ouro Preto Computing Department, 35.400-000 Ouro Preto, MG
dc.description.affiliationUniversidade Federal Do Ceará Teleinformatic Engeneering Department, Fortaleza, CE
dc.description.affiliationUniversidade de Fortaleza Post-Graduate Program in Applied Informatics, Fortaleza, CE
dc.description.affiliationUniversidade Estadual Paulista Computer Science Department, Bauru, SP
dc.description.affiliationUnespUniversidade Estadual Paulista Computer Science Department, Bauru, SP
dc.format.extent3561-3573
dc.identifierhttp://dx.doi.org/10.1016/j.eswa.2012.12.063
dc.identifier.citationExpert Systems with Applications, v. 40, n. 9, p. 3561-3573, 2013.
dc.identifier.doi10.1016/j.eswa.2012.12.063
dc.identifier.issn0957-4174
dc.identifier.lattes9039182932747194
dc.identifier.scopus2-s2.0-84874665471
dc.identifier.urihttp://hdl.handle.net/11449/75762
dc.identifier.wosWOS:000316581300023
dc.language.isoeng
dc.relation.ispartofExpert Systems with Applications
dc.relation.ispartofjcr3.768
dc.relation.ispartofsjr1,271
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectBayesian
dc.subjectECG classification
dc.subjectFeature extraction
dc.subjectMultilayer artificial neural network
dc.subjectOptimum-path forest
dc.subjectSupport vector machine
dc.subjectArrhythmia classification
dc.subjectBayesian classifier
dc.subjectCardiac arrhythmia
dc.subjectCardiac rhythms
dc.subjectClassification time
dc.subjectComputational costs
dc.subjectEcg classifications
dc.subjectElectrocardiogram signal
dc.subjectEvaluation protocol
dc.subjectFeature extraction and classification
dc.subjectGraph-based
dc.subjectHeart disease diagnosis
dc.subjectHeartbeat signals
dc.subjectMedical instrumentation
dc.subjectMultilayer artificial neural networks
dc.subjectOptimum-path forests
dc.subjectPattern recognition techniques
dc.subjectRobust performance
dc.subjectSignal classification
dc.subjectSVM classifiers
dc.subjectTraining and testing
dc.subjectDiseases
dc.subjectExpert systems
dc.subjectForestry
dc.subjectMultilayers
dc.subjectNeural networks
dc.subjectSupport vector machines
dc.subjectElectrocardiography
dc.subjectExpert Systems
dc.subjectNeural Networks
dc.titleECG arrhythmia classification based on optimum-path foresten
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dspace.entity.typePublication
unesp.author.lattes9039182932747194
unesp.author.orcid0000-0003-2430-2030[5]
unesp.author.orcid0000-0003-3886-4309[3]
unesp.author.orcid0000-0002-6494-7514[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos