Logotipo do repositório
 

Publicação:
Classification of soil respiration in areas of sugarcane renewal using decision treecultural

dc.contributor.authorVieira Farhate, Camila Viana
dc.contributor.authorSouza, Zigomar Menezes de
dc.contributor.authorMedeiros Oliveira, Stanley Robson de
dc.contributor.authorNunes Carvalho, Joao Luis
dc.contributor.authorLa Scala Junior, Newton [UNESP]
dc.contributor.authorGuimaraes Santos, Ana Paula
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
dc.contributor.institutionBrazilian Ctr Res Energy & Mat
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:45:06Z
dc.date.available2018-11-26T17:45:06Z
dc.date.issued2018-05-01
dc.description.abstractThe use of data mining is a promising alternative to predict soil respiration from correlated variables. Our objective was to build a model using variable selection and decision tree induction to predict different levels of soil respiration, taking into account physical, chemical and microbiological variables of soil as well as precipitation in renewal of sugarcane areas. The original dataset was composed of 19 variables (18 independent variables and one dependent (or response) variable). The variable-target refers to soil respiration as the target classification. Due to a large number of variables, a procedure for variable selection was conducted to remove those with low correlation with the variable-target. For that purpose, four approaches of variable selection were evaluated: no variable selection, correlation-based feature selection (CFS), chisquare method (chi(2)) and Wrapper. To classify soil respiration, we used the decision tree induction technique available in the Weka software package. Our results showed that data mining techniques allow the development of a model for soil respiration classification with accuracy of 81 %, resulting in a knowledge base composed of 27 rules for prediction of soil respiration. In particular, the wrapper method for variable selection identified a subset of only five variables out of 18 available in the original dataset, and they had the following order of influence in determining soil respiration: soil temperature > precipitation > macroporosity > soil moisture > potential acidity.en
dc.description.affiliationUniv Estadual Campinas, FEAGRI, Av Candido Rondon 501, BR-13083875 Campinas, SP, Brazil
dc.description.affiliationEmbrapa Agr Informat, Computat Intelligence Lab, Av Andre Tosello 209, BR-13083886 Campinas, SP, Brazil
dc.description.affiliationBrazilian Ctr Res Energy & Mat, Brazilian Bioethanol Sci & Technol Lab, R Giuseppe Maximo Scolfaro 10000, BR-13083100 Campinas, SP, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Exact Sci, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Exact Sci, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, SP, Brazil
dc.format.extent216-224
dc.identifierhttp://dx.doi.org/10.1590/1678-992X-2016-0473
dc.identifier.citationScientia Agricola. Cerquera Cesar: Univ Sao Paolo, v. 75, n. 3, p. 216-224, 2018.
dc.identifier.doi10.1590/1678-992X-2016-0473
dc.identifier.fileS0103-90162018000300216.pdf
dc.identifier.issn1678-992X
dc.identifier.scieloS0103-90162018000300216
dc.identifier.urihttp://hdl.handle.net/11449/163821
dc.identifier.wosWOS:000424389600006
dc.language.isoeng
dc.publisherUniv Sao Paolo
dc.relation.ispartofScientia Agricola
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectsoil CO2 emission
dc.subjectdata mining
dc.subjectvariable selection
dc.subjectsoil temperature
dc.subjectsoil organic matter
dc.titleClassification of soil respiration in areas of sugarcane renewal using decision treeculturalen
dc.typeArtigo
dcterms.rightsHolderUniv Sao Paolo
dspace.entity.typePublication
unesp.departmentCiências Exatas - FCAVpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
S0103-90162018000300216.pdf
Tamanho:
441.69 KB
Formato:
Adobe Portable Document Format