Logotipo do repositório
 

Publicação:
A non-homogeneous poisson model with spatial anisotropy applied to ozone data from Mexico City

dc.contributor.authorRodrigues, Eliane R.
dc.contributor.authorGamerman, Dani
dc.contributor.authorTarumoto, Mario H. [UNESP]
dc.contributor.authorTzintzun, Guadalupe
dc.contributor.institutionUniversidad Nacional Autónoma de México
dc.contributor.institutionUniversidade Federal do Rio de Janeiro (UFRJ)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionInstituto Nacional de Ecología y Cambio Climático
dc.date.accessioned2015-10-21T20:50:08Z
dc.date.available2015-10-21T20:50:08Z
dc.date.issued2015-06-01
dc.description.abstractIn this work we consider a non-homogenous Poisson model to study the behaviour of the number of times that a pollutant's concentration surpasses a given threshold of interest. Spatial dependence is imposed on the parameters of the Poisson intensity function in order to account for the possible correlation between measurements in different sites. An anisotropic model is used due to the nature of the region of interest. Estimation of the parameters of the model is performed using the Bayesian point of view via Markov chain Monte Carlo (MCMC) algorithms. We also consider prediction of the days in which exceedances of the threshold might occur at sites where measurements cannot be taken. This is obtained by spatial interpolation using the information provided by the sites where measurements are available. The prediction procedure allows for estimation of the behaviour of the mean function of the non-homogeneous Poisson process associated with those sites. The models considered here are applied to ozone data obtained from the monitoring network of Mexico City.en
dc.description.affiliationInstituto de Matemáticas, Universidad Nacional Autónoma de México, Area de la Investigación Científica, 04510 , Mexico, DF, Mexico
dc.description.affiliationDepartamento de Estatística, Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
dc.description.affiliationInstituto Nacional de Ecología y Cambio Climático, Secretaría de Medio Ambiente y Recursos Naturales, Mexico
dc.description.affiliationUnespUniversidade Estadual Paulista, Departamento de Estatística, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista Júlio de Mesquita Filho, Presidente Prudente, Brazil
dc.description.sponsorshipDireccion General de Apoyo al Personal Academico of the Universidad Nacional Autonoma de Mexico, Mexico
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdDireccion General de Apoyo al Personal Academico of the Universidad Nacional Autonoma de Mexico, Mexico: PAPIIT-IN102713-3
dc.format.extent393-422
dc.identifierhttp://link.springer.com/article/10.1007%2Fs10651-014-0303-6
dc.identifier.citationEnvironmental And Ecological Statistics. Dordrecht: Springer, v. 22, n. 2, p. 393-422, 2015.
dc.identifier.doi10.1007/s10651-014-0303-6
dc.identifier.issn1352-8505
dc.identifier.urihttp://hdl.handle.net/11449/129320
dc.identifier.wosWOS:000354618100009
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofEnvironmental And Ecological Statistics
dc.relation.ispartofjcr0.829
dc.relation.ispartofsjr0,594
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectAnisotropic modelsen
dc.subjectBayesian inferenceen
dc.subjectMCMC methodsen
dc.subjectNon-homogeneous Poisson modelsen
dc.subjectSpatial interpolationen
dc.subjectSpatial modelsen
dc.titleA non-homogeneous poisson model with spatial anisotropy applied to ozone data from Mexico Cityen
dc.typeArtigo
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências e Tecnologia, Presidente Prudentept
unesp.departmentEstatística - FCTpt

Arquivos