Convolutional Neural Networks and Image Patches for Lithological Classification of Brazilian Pre-Salt Rocks
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Lithological classification is a process employed to recognize and interpret distinct structures of rocks, providing essential information regarding their petrophysical, morphological, textural, and geological aspects. The process is particularly interesting regarding carbonate sedimentary rocks in the context of petroleum basins since such rocks can store large quantities of natural gas and oil. Thus, their features are intrinsically correlated with the production potential of an oil reservoir. This paper proposes an automatic pipeline for the lithological classification of carbonate rocks into seven distinct classes, comparing nine state-of-the-art deep learning architectures. As far as we know, this is the largest study in the field. Experiments were performed over a private dataset obtained from a Brazilian petroleum company, showing that MobileNetV3large is the more suitable approach for the undertaking.
Descrição
Palavras-chave
Convolutional Neural Networks, Lithological Classification, Pre-Salt Rocks
Idioma
Inglês
Citação
Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, v. 3, p. 648-655.





