Publicação: A note about the appearance of non-hyperbolic solutions in a mechanical pendulum system
dc.contributor.author | Belato, D. | |
dc.contributor.author | Balthazar, José Manoel [UNESP] | |
dc.contributor.author | Weber, H. I. | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio) | |
dc.date.accessioned | 2014-02-26T17:17:36Z | |
dc.date.accessioned | 2014-05-20T14:16:02Z | |
dc.date.available | 2014-02-26T17:17:36Z | |
dc.date.available | 2014-05-20T14:16:02Z | |
dc.date.issued | 2003-12-01 | |
dc.description.abstract | The investigation of the behavior of a nonlinear system consists in the analysis of different stages of its motion, where the complexity varies with the proximity of a resonance region. Near this region the stability domain of the system undergoes sudden changes due basically to competition and interaction between periodic and saddle solutions inside the phase portrait, leading to the occurrence of the most different phenomena. Depending of the domain of the chosen control parameter, these events can reveal interesting geometric features of the system so that the phase portrait is not capable to express all them, since the projection of these solutions on the two-dimensional surface can hide some aspects of these events. In this work we will investigate the numerical solutions of a particular pendulum system close to a secondary resonance region, where we vary the control parameter in a restrict domain in order to draw a preliminary identification about what happens with this system. This domain includes the appearance of non-hyperbolic solutions where the basin of attraction in the center of the phase portrait diminishes considerably, almost disappearing, and afterwards its size increases with the direction of motion inverted. This phenomenon delimits a boundary between low and high frequency of the external excitation. | en |
dc.description.affiliation | UNICAMP, Fac Engn Mecan, Dept Projeto Mecan, BR-13803970 Campinas, SP, Brazil | |
dc.description.affiliation | UNESP, Inst Geociencias & Ciências Exatas, Dept Estatist Matemat Aplicada & Comp, BR-13500230 Rio Claro, SP, Brazil | |
dc.description.affiliation | Pontificia Univ Catolica Rio de Janeiro, Dept Engn Mecan, BR-22453900 Rio de Janeiro, Brazil | |
dc.description.affiliationUnesp | UNESP, Inst Geociencias & Ciências Exatas, Dept Estatist Matemat Aplicada & Comp, BR-13500230 Rio Claro, SP, Brazil | |
dc.format.extent | 309-317 | |
dc.identifier | http://dx.doi.org/10.1023/B:NODY.0000013510.13416.2e | |
dc.identifier.citation | Nonlinear Dynamics. Dordrecht: Kluwer Academic Publ, v. 34, n. 3-4, p. 309-317, 2003. | |
dc.identifier.doi | 10.1023/B:NODY.0000013510.13416.2e | |
dc.identifier.issn | 0924-090X | |
dc.identifier.uri | http://hdl.handle.net/11449/24809 | |
dc.identifier.wos | WOS:000188456400006 | |
dc.language.iso | eng | |
dc.publisher | Kluwer Academic Publ | |
dc.relation.ispartof | Nonlinear Dynamics | |
dc.relation.ispartofjcr | 4.339 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Web of Science | |
dc.subject | non-hyperbolic solution | pt |
dc.subject | pendulum | pt |
dc.subject | phase portrait geometry | pt |
dc.subject | nonlinear dynamics | pt |
dc.title | A note about the appearance of non-hyperbolic solutions in a mechanical pendulum system | en |
dc.type | Artigo | |
dcterms.license | http://www.springer.com/open+access/authors+rights | |
dcterms.rightsHolder | Kluwer Academic Publ | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claro | pt |
unesp.department | Estatística, Matemática Aplicada e Computação - IGCE | pt |
Arquivos
Licença do Pacote
1 - 1 de 1
Carregando...
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: