Publicação: Learning HMMs for nucleotide sequences from amino acid alignments
dc.contributor.author | Fischer, Carlos Norberto [UNESP] | |
dc.contributor.author | Carareto, Claudia Marcia [UNESP] | |
dc.contributor.author | Santos, Renato Augusto Corrêa dos [UNESP] | |
dc.contributor.author | Cerri, Ricardo | |
dc.contributor.author | Costa, Eduardo | |
dc.contributor.author | Schietgat, Leander | |
dc.contributor.author | Vens, Celine | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Katholieke Universiteit Leuven | |
dc.date.accessioned | 2015-10-21T20:14:38Z | |
dc.date.available | 2015-10-21T20:14:38Z | |
dc.date.issued | 2015-06-01 | |
dc.description.abstract | Profile hidden Markov models (profile HMMs) are known to efficiently predict whether an amino acid (AA) sequence belongs to a specific protein family. Profile HMMs can also be used to search for protein domains in genome sequences. In this case, HMMs are typically learned from AA sequences and then used to search on the six-frame translation of nucleotide (NT) sequences. However, this approach demands additional processing of the original data and search results. Here, we propose an alternative and more direct method which converts an AA alignment into an NT one, after which an NT-based HMM is trained to be applied directly on a genome. | en |
dc.description.affiliation | Universidade Federal de São Carlos, Departamento de Ciência da Computação | |
dc.description.affiliation | Universidade de São Paulo, Departamento de Ciência da Computação | |
dc.description.affiliation | Katholieke Universiteit Leuven, Department of Computer Science | |
dc.description.affiliation | Katholieke Universiteit Leuven, Department of Public Health and Primary Care | |
dc.description.affiliationUnesp | Universidade Estadual Paulista, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas de Rio Claro | |
dc.description.affiliationUnesp | Universidade Estadual Paulista, Departamento de Biologia, Instituto de Biociências de Rio Claro | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | FAPESP: 2012/24774-2 | |
dc.description.sponsorshipId | FAPESP: 2010/10731-4 | |
dc.description.sponsorshipId | CNPq: 306493/2013-6 | |
dc.format.extent | 1836-1838 | |
dc.identifier | http://bioinformatics.oxfordjournals.org/content/31/11/1836 | |
dc.identifier.citation | Bioinformatics. Oxford: Oxford Univ Press, v. 31, n. 11, p. 1836-1838, 2015. | |
dc.identifier.doi | 10.1093/bioinformatics/btv054 | |
dc.identifier.issn | 1367-4803 | |
dc.identifier.lattes | 1858554355077119 | |
dc.identifier.lattes | 3425772998319216 | |
dc.identifier.orcid | 0000-0002-0298-1354 | |
dc.identifier.uri | http://hdl.handle.net/11449/129033 | |
dc.identifier.wos | WOS:000356625300020 | |
dc.language.iso | eng | |
dc.publisher | Oxford Univ Press | |
dc.relation.ispartof | Bioinformatics | |
dc.relation.ispartofjcr | 5.481 | |
dc.relation.ispartofsjr | 6,140 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Web of Science | |
dc.title | Learning HMMs for nucleotide sequences from amino acid alignments | en |
dc.type | Artigo | |
dcterms.license | http://www.oxfordjournals.org/access_purchase/self-archiving_policyb.html | |
dcterms.rightsHolder | Oxford Univ Press | |
dspace.entity.type | Publication | |
unesp.author.lattes | 1858554355077119[1] | |
unesp.author.lattes | 3425772998319216[2] | |
unesp.author.orcid | 0000-0002-5598-6263[1] | |
unesp.author.orcid | 0000-0002-0298-1354[2] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claro | pt |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claro | pt |
unesp.department | Biologia - IBEstatística, Matemática Aplicada e Computação - IGCE | pt |