Logotipo do repositório
 

Publicação:
Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system

dc.contributor.authorGouveia, Márcio R. A. [UNESP]
dc.contributor.authorMessias, Marcelo [UNESP]
dc.contributor.authorPessoa, Claudio [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:01:50Z
dc.date.available2018-12-11T17:01:50Z
dc.date.issued2016-04-01
dc.description.abstractWe present a global dynamical analysis of the following quadratic differential system (Formula presented.) , where (Formula presented.) are the state variables and a, b, d, f, g are real parameters. This system has been proposed as a new type of chaotic system, having additional complex dynamical properties to the well-known chaotic systems defined in (Formula presented.) , alike Lorenz, Rössler, Chen and other. By using the Poincaré compactification for a polynomial vector field in (Formula presented.) , we study the dynamics of this system on the Poincaré ball, showing that it undergoes interesting types of bifurcations at infinity. We also investigate the existence of first integrals and study the dynamical behavior of the system on the invariant algebraic surfaces defined by these first integrals, showing the existence of families of homoclinic and heteroclinic orbits and centers contained on these invariant surfaces.en
dc.description.affiliationDepartamento de Matemática Instituto de Biociências Letras e Ciências Exatas - IBILCE Univ Estadual Paulista (UNESP)
dc.description.affiliationDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia - FCT Univ Estadual Paulista (UNESP)
dc.description.affiliationUnespDepartamento de Matemática Instituto de Biociências Letras e Ciências Exatas - IBILCE Univ Estadual Paulista (UNESP)
dc.description.affiliationUnespDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia - FCT Univ Estadual Paulista (UNESP)
dc.format.extent703-713
dc.identifierhttp://dx.doi.org/10.1007/s11071-015-2520-4
dc.identifier.citationNonlinear Dynamics, v. 84, n. 2, p. 703-713, 2016.
dc.identifier.doi10.1007/s11071-015-2520-4
dc.identifier.file2-s2.0-84961166314.pdf
dc.identifier.issn1573-269X
dc.identifier.issn0924-090X
dc.identifier.lattes3757225669056317
dc.identifier.lattes3724937886557424
dc.identifier.orcid0000-0001-6790-1055
dc.identifier.scopus2-s2.0-84961166314
dc.identifier.urihttp://hdl.handle.net/11449/172702
dc.language.isoeng
dc.relation.ispartofNonlinear Dynamics
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectCenters on R3
dc.subjectDynamics at infinity
dc.subjectFirst integral
dc.subjectHeteroclinic orbits
dc.subjectHomoclinic orbits
dc.subjectInvariant algebraic surfaces
dc.subjectPoincaré compactification
dc.subjectQuadratic system
dc.titleBifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic systemen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes3757225669056317
unesp.author.lattes3724937886557424[3]
unesp.author.orcid0000-0001-6790-1055[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentMatemática e Computação - FCTpt
unesp.departmentMatemática - IBILCEpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-84961166314.pdf
Tamanho:
936.43 KB
Formato:
Adobe Portable Document Format
Descrição: