Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Using sentinel-2 satellite images and machine learning algorithms to predict tropical pasture forage mass, crude protein, and fiber content

dc.contributor.authorFernandes, Marcia Helena Machado da Rocha [UNESP]
dc.contributor.authorFernandesJunior, Jalme de Souza
dc.contributor.authorAdams, Jordan Melissa
dc.contributor.authorLee, Mingyung
dc.contributor.authorReis, Ricardo Andrade [UNESP]
dc.contributor.authorTedeschi, Luis Orlindo
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionSigfarm Intelligence LLC
dc.contributor.institutionTexas A & amp;M University
dc.date.accessioned2025-04-29T18:49:51Z
dc.date.issued2024-12-01
dc.description.abstractGrasslands cover approximately 24% of the Earth’s surface and are the main feed source for cattle and other ruminants. Sustainable and efficient grazing systems require regular monitoring of the quantity and nutritive value of pastures. This study demonstrates the potential of estimating pasture leaf forage mass (FM), crude protein (CP) and fiber content of tropical pastures using Sentinel-2 satellite images and machine learning algorithms. Field datasets and satellite images were assessed from an experimental area of Marandu palisade grass (Urochloa brizantha sny. Brachiaria brizantha) pastures, with or without nitrogen fertilization, and managed under continuous stocking during the pasture growing season from 2016 to 2020. Models based on support vector regression (SVR) and random forest (RF) machine-learning algorithms were developed using meteorological data, spectral reflectance, and vegetation indices (VI) as input features. In general, SVR slightly outperformed the RF models. The best predictive models to estimate FM were those with VI combined with meteorological data. For CP and fiber content, the best predictions were achieved using a combination of spectral bands and meteorological data, resulting in R2 of 0.66 and 0.57, and RMSPE of 0.03 and 0.04 g/g dry matter. Our results have promising potential to improve precision feeding technologies and decision support tools for efficient grazing management.en
dc.description.affiliationDepartment of Animal Science Sao Paulo State University (UNESP), Campus Jaboticabal
dc.description.affiliationSigfarm Intelligence LLC
dc.description.affiliationDepartment of Animal Science Texas A & amp;M University
dc.description.affiliationUnespDepartment of Animal Science Sao Paulo State University (UNESP), Campus Jaboticabal
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2015/16631-5
dc.description.sponsorshipIdFAPESP: 2017/18750-7
dc.identifierhttp://dx.doi.org/10.1038/s41598-024-59160-x
dc.identifier.citationScientific Reports, v. 14, n. 1, 2024.
dc.identifier.doi10.1038/s41598-024-59160-x
dc.identifier.issn2045-2322
dc.identifier.scopus2-s2.0-85190466873
dc.identifier.urihttps://hdl.handle.net/11449/300530
dc.language.isoeng
dc.relation.ispartofScientific Reports
dc.sourceScopus
dc.titleUsing sentinel-2 satellite images and machine learning algorithms to predict tropical pasture forage mass, crude protein, and fiber contenten
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublication3d807254-e442-45e5-a80b-0f6bf3a26e48
relation.isOrgUnitOfPublication.latestForDiscovery3d807254-e442-45e5-a80b-0f6bf3a26e48
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabalpt

Arquivos