Logo do repositório

Detecção de imagens deepfake: um estudo comparativo

Carregando...
Imagem de Miniatura

Orientador

Passos Junior, Leandro Aparecido

Coorientador

Pós-graduação

Curso de graduação

Bauru - FC - Ciência da Computação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Tipo

Trabalho de conclusão de curso

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Resumo (português)

Com o avanço acelerado da inteligência artificial, os deepfakes - vídeos ou imagens manipulados de maneira convincente - emergiram como uma preocupação significativa na era digital. Essas falsificações hiper-realistas têm o potencial de enganar indivíduos, disseminar desinformação e comprometer a autenticidade da informação, representando uma ameaça real à segurança digital e à integridade informativa. Este trabalho aborda a necessidade de desenvolver métodos eficazes para a detecção de deepfakes, uma ferramenta essencial na luta contra a desinformação, apresentando os conceitos fundamentais da área. Este trabalho comparou três métodos estado-da-arte de detecção de imagens falsas: Detector de Falsificações com Transformador de Consistência de Identidade, CORE e o Modelo de Detecção de Deepfake Ignorante de ID, apresentando resultados satisfatórios, com o método de detecção ignorante de ID apresentando o melhor desempenho.

Resumo (inglês)

With the rapid advancement of artificial intelligence, deepfakes – convincingly manipulated videos or images – have emerged as a significant concern in the digital age. These hyper-realistic fakes have the potential to deceive individuals, spread disinformation and compromise the authenticity of information, posing a real threat to digital security and informational integrity. This work addresses the need to develop effective methods for detecting deepfakes, an essential tool in the fight against disinformation, presenting the fundamental concepts of the area. This work compared three state-of-the-art methods for detecting false images: Forgery Detector with Identity Consistency Transformator, CORE and the ID-Unaware Deepfake Detection Model, presenting satisfactory results, with the ID-unaware model having the best performance.

Descrição

Palavras-chave

Deepfake, Inteligência artificial, Deep learning, Detecção de Deepfake, Trabalho de Conclusão de Curso

Idioma

Português

Citação

CORREA, Miguel Cesar. Detecção de imagens deepfake: um estudo comparativo. 2023. Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação) - Faculdade de Ciências, Universidade Estadual Paulista (Unesp), Bauru, 2023.

Itens relacionados

Financiadores

Unidades

Item type:Unidade,
Faculdade de Ciências
FC
Campus: Bauru


Departamentos

Cursos de graduação

Item type:Curso de graduação,

Programas de pós-graduação