Logotipo do repositório
 

Publicação:
Path integral approach to the full Dicke model

dc.contributor.authorAparicio Alcalde, M. [UNESP]
dc.contributor.authorPimentel, B. M. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2013-09-30T19:04:27Z
dc.date.accessioned2014-05-20T14:14:46Z
dc.date.available2013-09-30T19:04:27Z
dc.date.available2014-05-20T14:14:46Z
dc.date.issued2011-10-01
dc.description.abstractThe full Dicke model describes a system of N identical two level-atoms coupled to a single mode quantized bosonic field. The model considers rotating and counter-rotating coupling terms between the atoms and the bosonic Field, with coupling constants g(1) and g(2), for each one of the coupling terms, respectively. We study finite temperature properties of the model using the path integral approach and functional methods. In the thermodynamic limit, N -> infinity, the system exhibits phase transition from normal to superradiant phase, at some critical values of temperature and coupling constants. We distinguish between three particular cases, the first one corresponds to the case of rotating wave approximation, where g(1) not equal 0 and g(2) = 0, the second one corresponds to the case of g(1) = 0 and g(2) not equal 0, in these two cases the model has a continuous symmetry. The last one, corresponds to the case of g(1) not equal 0 and g(2) not equal 0, where the model has a discrete symmetry. The phase transition in each case is related to the spontaneous breaking of its respective symmetry. For each one of these three particular cases, we find the asymptotic behaviour of the partition function in the thermodynamic limit, and the collective spectrum of the system in the normal and the superradiant phase. For the case of rotating wave approximation, and also the case of g(1) = 0 and g(2) not equal 0, in the superradiant phase, the collective spectrum has a zero energy value, corresponding to the Goldstone mode associated to the continuous symmetry breaking of the model. Our analysis and results are valid in the limit of zero temperature, beta -> infinity, ill which, the model exhibits a quantum phase transition. (C) 2011 Elsevier B.V. All rights reserved.en
dc.description.affiliationSão Paulo State Univ, UNESP, Inst Fis Teor, BR-01156970 São Paulo, Brazil
dc.description.affiliationUnespSão Paulo State Univ, UNESP, Inst Fis Teor, BR-01156970 São Paulo, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.format.extent3385-3396
dc.identifierhttp://dx.doi.org/10.1016/j.physa.2011.05.018
dc.identifier.citationPhysica A-statistical Mechanics and Its Applications. Amsterdam: Elsevier B.V., v. 390, n. 20, p. 3385-3396, 2011.
dc.identifier.doi10.1016/j.physa.2011.05.018
dc.identifier.fileWOS000294590800019.pdf
dc.identifier.issn0378-4371
dc.identifier.urihttp://hdl.handle.net/11449/24731
dc.identifier.wosWOS:000294590800019
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofPhysica A: Statistical Mechanics and Its Applications
dc.relation.ispartofjcr2.132
dc.relation.ispartofsjr0,773
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectDicke modelen
dc.subjectCollective excitationsen
dc.subjectQuantum phase transitionen
dc.titlePath integral approach to the full Dicke modelen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000294590800019.pdf
Tamanho:
280.77 KB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: