Publicação: Classification of petroleum well drilling operations with a hybrid particle swarm/ant colony algorithm
dc.contributor.author | Serapião, Adriane B. S. [UNESP] | |
dc.contributor.author | Mendes, José Ricardo P. | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.date.accessioned | 2014-05-27T11:24:02Z | |
dc.date.available | 2014-05-27T11:24:02Z | |
dc.date.issued | 2009-11-09 | |
dc.description.abstract | This paper describes an investigation of the hybrid PSO/ACO algorithm to classify automatically the well drilling operation stages. The method feasibility is demonstrated by its application to real mud-logging dataset. The results are compared with bio-inspired methods, and rule induction and decision tree algorithms for data mining. © 2009 Springer Berlin Heidelberg. | en |
dc.description.affiliation | UNESP/IGCE/DEMAC, C.P. 178, Rio Claro (SP) CEP 13506-900 | |
dc.description.affiliation | UNICAMP/FEM/DEP, C.P. 6122, Campinas (SP) CEP 13081-970 | |
dc.description.affiliationUnesp | UNESP/IGCE/DEMAC, C.P. 178, Rio Claro (SP) CEP 13506-900 | |
dc.format.extent | 301-310 | |
dc.identifier | http://dx.doi.org/10.1007/978-3-642-02568-6_31 | |
dc.identifier.citation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 5579 LNAI, p. 301-310. | |
dc.identifier.doi | 10.1007/978-3-642-02568-6_31 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.lattes | 6997814343189860 | |
dc.identifier.orcid | 0000-0001-9728-7092 | |
dc.identifier.scopus | 2-s2.0-70350633099 | |
dc.identifier.uri | http://hdl.handle.net/11449/71234 | |
dc.identifier.wos | WOS:000269972300031 | |
dc.language.iso | eng | |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
dc.relation.ispartofsjr | 0,295 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Bio-inspired | |
dc.subject | Colony algorithms | |
dc.subject | Data sets | |
dc.subject | Decision-tree algorithm | |
dc.subject | Hybrid particles | |
dc.subject | Rule induction | |
dc.subject | Data mining | |
dc.subject | Decision trees | |
dc.subject | Intelligent systems | |
dc.subject | Mud logging | |
dc.subject | Oil wells | |
dc.subject | Petroleum industry | |
dc.subject | Well drilling | |
dc.title | Classification of petroleum well drilling operations with a hybrid particle swarm/ant colony algorithm | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.springer.com/open+access/authors+rights | |
dspace.entity.type | Publication | |
unesp.author.lattes | 6997814343189860[1] | |
unesp.author.orcid | 0000-0001-9728-7092[1] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claro | pt |
unesp.department | Estatística, Matemática Aplicada e Computação - IGCE | pt |