Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Identification of asteroid families' members

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Capítulo de livro

Direito de acesso

Resumo

Asteroid families are groupings of objects with a common origin (parent body) generated by collision events, rotational fission of the parent body, characteristic ejection velocities, and a consequence of the dynamic region where they survive. The hierarchical clustering approach identifies these groupings in proper elements or frequency domains. However, HCM needs to improve accuracy in regions of high population density, where it is almost impossible to differentiate members between neighboring families. The gradual increase in large, reliable databases of asteroid proper elements has generated the need to use more sophisticated algorithms, such as machine learning or genetic algorithms. This chapter reviews supervised, unsupervised, and genetic algorithms that classify new asteroid family members. The best free hyperparameters (FP) were compared to determine the most effective algorithm. In comparison, genetic algorithms were observed as a more optimal tool; an efficient and faster alternative was obtained by obtaining more optimal hyperparameters.

Descrição

Palavras-chave

Asteroids: general, Celestial mechanics, Genetic algorithms, Machine learning methods, Minor planets

Idioma

Inglês

Citação

Machine Learning for Small Bodies in the Solar System, p. 33-57.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso