Logo do repositório
 

Feature extraction approaches for biological sequences: A comparative study of mathematical features

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Resenha

Direito de acesso

Resumo

As consequence of the various genomic sequencing projects, an increasing volume of biological sequence data is being produced. Although machine learning algorithms have been successfully applied to a large number of genomic sequence-related problems, the results are largely affected by the type and number of features extracted. This effect has motivated new algorithms and pipeline proposals, mainly involving feature extraction problems, in which extracting significant discriminatory information from a biological set is challenging. Considering this, our work proposes a new study of feature extraction approaches based on mathematical features (numerical mapping with Fourier, entropy and complex networks). As a case study, we analyze long non-coding RNA sequences. Moreover, we separated this work into three studies. First, we assessed our proposal with the most addressed problem in our review, e.g. lncRNA and mRNA; second, we also validate the mathematical features in different classification problems, to predict the class of lncRNA, e.g. circular RNAs sequences; third, we analyze its robustness in scenarios with imbalanced data. The experimental results demonstrated three main contributions: first, an in-depth study of several mathematical features; second, a new feature extraction pipeline; and third, its high performance and robustness for distinct RNA sequence classification.

Descrição

Palavras-chave

Biological sequences, Complex networks, Entropy, Feature extraction, Fourier, Numerical mapping

Idioma

Inglês

Citação

Briefings in Bioinformatics, v. 22, n. 5, 2021.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação