Logo do repositório
 

Real-time crowd density estimation using images

dc.contributor.authorMarana, Aparecido Nilceu [UNESP]
dc.contributor.authorCavenaghi, Marcos Antônio [UNESP]
dc.contributor.authorSpolon, Roberta [UNESP]
dc.contributor.authorDrumond, F. L. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:21:41Z
dc.date.available2014-05-27T11:21:41Z
dc.date.issued2005-12-01
dc.description.abstractThis paper presents a technique for real-time crowd density estimation based on textures of crowd images. In this technique, the current image from a sequence of input images is classified into a crowd density class. Then, the classification is corrected by a low-pass filter based on the crowd density classification of the last n images of the input sequence. The technique obtained 73.89% of correct classification in a real-time application on a sequence of 9892 crowd images. Distributed processing was used in order to obtain real-time performance. © Springer-Verlag Berlin Heidelberg 2005.en
dc.description.affiliationDCo (Department of Computing) FC (School of Sciences) UNESP (Sao Paulo State University), A.E. Luis Edmundo Carrijo Coube, sn, 17033-360, Bauru, SP
dc.description.affiliationUnespDCo (Department of Computing) FC (School of Sciences) UNESP (Sao Paulo State University), A.E. Luis Edmundo Carrijo Coube, sn, 17033-360, Bauru, SP
dc.format.extent355-362
dc.identifierhttp://dx.doi.org/10.1007/11595755_43
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 3804 LNCS, p. 355-362.
dc.identifier.doi10.1007/11595755_43
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.lattes6027713750942689
dc.identifier.lattes8163849451440263
dc.identifier.scopus2-s2.0-33744808549
dc.identifier.urihttp://hdl.handle.net/11449/68504
dc.identifier.wosWOS:000234830800043
dc.language.isoeng
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.relation.ispartofsjr0,295
dc.rights.accessRightsAcesso abertopt
dc.sourceScopus
dc.subjectClassification (of information)
dc.subjectDistributed computer systems
dc.subjectImage processing
dc.subjectLow pass filters
dc.subjectReal time systems
dc.subjectCrowd density estimation
dc.subjectInput sequence
dc.subjectReal-time performance
dc.subjectParameter estimation
dc.titleReal-time crowd density estimation using imagesen
dc.typeTrabalho apresentado em eventopt
dcterms.licensehttp://www.springer.com/open+access/authors+rights
dspace.entity.typePublication
relation.isDepartmentOfPublication872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isDepartmentOfPublication.latestForDiscovery872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.author.lattes6027713750942689[1]
unesp.author.lattes8163849451440263
unesp.author.orcid0000-0003-4861-7061[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos