Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Evaluation of YOLO Efficiency in Automatic Orange Detection in Multi-Exposure Images

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Brazil is the largest producer of oranges in the world and the automatic detection of fruits has been a challenging task in the context of remote sensing, due to variations in fruit appearance, changes in lighting and occlusions of foliage and neighboring fruits. In this sense, this paper focus on the detection of oranges in multispectral images, with different spectral bands and exposures, using a convolutional neural network (CNN) known as YOU ONLY LOOK ONCE (YOLO). The results indicate that, after 300 epochs, the model demonstrated an accuracy of 81.5% and an approximate recovery rate of 85%. Shutter speeds 1/640s and 1/250s are not suitable for detection due to low light and overexposure, respectively. Intermediate values may be more suitable for identifying a larger number of fruits.

Descrição

Palavras-chave

Agriculture, Close-range, Computer Vision, Deep learning, Fruit detection

Idioma

Inglês

Citação

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 10, n. 3, p. 303-308, 2024.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso