Quadratic slow-fast systems on the plane
Carregando...
Fonte externa
Fonte externa
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Fonte externa
Fonte externa
Resumo
In this paper singularly perturbed quadratic polynomial differential systems εẋ=Pε(x,y)=P(x,y,ε),ẏ=Qε(x,y)=Q(x,y,ε)with x,y∈R,ε⩾0 and (Pε,Qε)=1 for ε>0, are considered. We prove that there are 10 classes of equivalence for these systems. We describe the dynamics of these 10 classes on the Poincaré disc when ε=0. For ε>0, we present the possible local behavior of the solutions near of a finite and infinite equilibrium point under suitable conditions. More specifically, if p0 is a finite equilibrium point then we obtain the local behavior for ε>0 using Fenichel theory. Assuming that p0 is an infinite equilibrium point, there exists K⊂M0 normally hyperbolic and p0∈M0′∩K using the Poincaré compactification and algebraic invariant we describe globally the dynamics for ε>0 small of some classes of equivalence.
Descrição
Palavras-chave
Quadratic system, Singular perturbation, Topological invariant, Vector field
Idioma
Inglês
Citação
Nonlinear Analysis: Real World Applications, v. 60.