Logotipo do repositório
 

Publicação:
Quadratic slow-fast systems on the plane

dc.contributor.authorMeza-Sarmiento, Ingrid S.
dc.contributor.authorOliveira, Regilene
dc.contributor.authorda Silva, Paulo R. [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T10:49:36Z
dc.date.available2021-06-25T10:49:36Z
dc.date.issued2021-08-01
dc.description.abstractIn this paper singularly perturbed quadratic polynomial differential systems εẋ=Pε(x,y)=P(x,y,ε),ẏ=Qε(x,y)=Q(x,y,ε)with x,y∈R,ε⩾0 and (Pε,Qε)=1 for ε>0, are considered. We prove that there are 10 classes of equivalence for these systems. We describe the dynamics of these 10 classes on the Poincaré disc when ε=0. For ε>0, we present the possible local behavior of the solutions near of a finite and infinite equilibrium point under suitable conditions. More specifically, if p0 is a finite equilibrium point then we obtain the local behavior for ε>0 using Fenichel theory. Assuming that p0 is an infinite equilibrium point, there exists K⊂M0 normally hyperbolic and p0∈M0′∩K using the Poincaré compactification and algebraic invariant we describe globally the dynamics for ε>0 small of some classes of equivalence.en
dc.description.affiliationDepartamento de Matemática – UFSCAR, Rod. Washington Luís km 235 - SP-310
dc.description.affiliationDepartamento de Matemática – ICMC–USP, Avenida Trabalhador São-Carlense, 400
dc.description.affiliationDepartamento de Matemática – IBILCE–UNESP, Rua C. Colombo, 2265
dc.description.affiliationUnespDepartamento de Matemática – IBILCE–UNESP, Rua C. Colombo, 2265
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2019/21181-0
dc.description.sponsorshipIdCNPq: 304766/2019-4
dc.identifierhttp://dx.doi.org/10.1016/j.nonrwa.2020.103286
dc.identifier.citationNonlinear Analysis: Real World Applications, v. 60.
dc.identifier.doi10.1016/j.nonrwa.2020.103286
dc.identifier.issn1468-1218
dc.identifier.scopus2-s2.0-85099386273
dc.identifier.urihttp://hdl.handle.net/11449/207141
dc.language.isoeng
dc.relation.ispartofNonlinear Analysis: Real World Applications
dc.sourceScopus
dc.subjectQuadratic system
dc.subjectSingular perturbation
dc.subjectTopological invariant
dc.subjectVector field
dc.titleQuadratic slow-fast systems on the planeen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentMatemática - IBILCEpt

Arquivos