Publicação: Quadratic slow-fast systems on the plane
dc.contributor.author | Meza-Sarmiento, Ingrid S. | |
dc.contributor.author | Oliveira, Regilene | |
dc.contributor.author | da Silva, Paulo R. [UNESP] | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2021-06-25T10:49:36Z | |
dc.date.available | 2021-06-25T10:49:36Z | |
dc.date.issued | 2021-08-01 | |
dc.description.abstract | In this paper singularly perturbed quadratic polynomial differential systems εẋ=Pε(x,y)=P(x,y,ε),ẏ=Qε(x,y)=Q(x,y,ε)with x,y∈R,ε⩾0 and (Pε,Qε)=1 for ε>0, are considered. We prove that there are 10 classes of equivalence for these systems. We describe the dynamics of these 10 classes on the Poincaré disc when ε=0. For ε>0, we present the possible local behavior of the solutions near of a finite and infinite equilibrium point under suitable conditions. More specifically, if p0 is a finite equilibrium point then we obtain the local behavior for ε>0 using Fenichel theory. Assuming that p0 is an infinite equilibrium point, there exists K⊂M0 normally hyperbolic and p0∈M0′∩K using the Poincaré compactification and algebraic invariant we describe globally the dynamics for ε>0 small of some classes of equivalence. | en |
dc.description.affiliation | Departamento de Matemática – UFSCAR, Rod. Washington Luís km 235 - SP-310 | |
dc.description.affiliation | Departamento de Matemática – ICMC–USP, Avenida Trabalhador São-Carlense, 400 | |
dc.description.affiliation | Departamento de Matemática – IBILCE–UNESP, Rua C. Colombo, 2265 | |
dc.description.affiliationUnesp | Departamento de Matemática – IBILCE–UNESP, Rua C. Colombo, 2265 | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | FAPESP: 2019/21181-0 | |
dc.description.sponsorshipId | CNPq: 304766/2019-4 | |
dc.identifier | http://dx.doi.org/10.1016/j.nonrwa.2020.103286 | |
dc.identifier.citation | Nonlinear Analysis: Real World Applications, v. 60. | |
dc.identifier.doi | 10.1016/j.nonrwa.2020.103286 | |
dc.identifier.issn | 1468-1218 | |
dc.identifier.scopus | 2-s2.0-85099386273 | |
dc.identifier.uri | http://hdl.handle.net/11449/207141 | |
dc.language.iso | eng | |
dc.relation.ispartof | Nonlinear Analysis: Real World Applications | |
dc.source | Scopus | |
dc.subject | Quadratic system | |
dc.subject | Singular perturbation | |
dc.subject | Topological invariant | |
dc.subject | Vector field | |
dc.title | Quadratic slow-fast systems on the plane | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Matemática - IBILCE | pt |