Logotipo do repositório
 

Publicação:
Condições suficientes de otimalidade em cálculo variacional

dc.contributor.advisorOliveira, Valeriano Antunes de [UNESP]
dc.contributor.authorRojas Jara, Rocío del Pilar [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2015-09-17T15:24:10Z
dc.date.available2015-09-17T15:24:10Z
dc.date.issued2013-12-20
dc.description.abstractIn this work we consider two variational problems with Lagrangian constraints of type g(t, x(t), x_ (t)) = 0. We present several results on su cient conditions for Kuhn-Tucker optimality assuming generalized invexity of the functions involved. We introduce two de nitions for the variational problems, the rst called L-KT-pseudo-invexity, which involves the Lagrangian multipliers and the second called KT-pseudo-invexity, which does not involve the Lagrangian multipliers. We present a characterization of L-KTpseudo- invex variational problems as those problems where all Kuhn-Tucker points are optimal solutions. Finally we show that, under some conditions, L-KT-pseudo-invexity is equivalent to KT-pseudo-invexityen
dc.description.abstractNeste trabalho consideramos dois problemas variacionais com restrições Lagrangeanas do tipo g(t, x(t), x_ (t)) = 0. Apresentamos vários resultados sobre condições su cientes de otimalidade Kuhn-Tucker supondo invexidade generalizada das funções envolvidas. Introduzimos duas de nições para os problemas variacionais estudados, a primeira chamada de L-KT-pseudo-invexidade, que envolve os multiplicadores Lagrangeanos, e a segunda chamada de KT-pseudo-invexidade, que não envolve os multiplicadores Lagrangeanos. Apresentamos uma caracterização dos problemas variacionais L-KT-pseudo-invexos como sendo aqueles problemas onde todos seus pontos Kuhn-Tucker são soluções ótimas. Finalmente mostramos que, sob algumas condições, L-KT-pseudo-invexidade é equivalente a KT-pseudo-invexidadept
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.format.extent36 f. : il.
dc.identifier.aleph000846652
dc.identifier.capes33004153071P0
dc.identifier.citationROJAS JARA, Rocío del Pilar. Condições suficientes de otimalidade em cálculo variacional. 2013. 36 f. Dissertação (mestrado) - Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Biociências, Letras e Ciências Exatas, 2013.
dc.identifier.filehttp://www.athena.biblioteca.unesp.br/exlibris/bd/cathedra/11-09-2015/000846652.pdf
dc.identifier.lattes9527284964541341
dc.identifier.urihttp://hdl.handle.net/11449/127550
dc.language.isopor
dc.publisherUniversidade Estadual Paulista (Unesp)
dc.rights.accessRightsAcesso aberto
dc.sourceAleph
dc.subjectCálculo variacionalpt
dc.subjectCondições de otimalidadept
dc.subjectConvexidade generalizadapt
dc.titleCondições suficientes de otimalidade em cálculo variacionalpt
dc.typeDissertação de mestrado
dspace.entity.typePublication
unesp.author.lattes9527284964541341
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.graduateProgramMatemática - IBILCEpt
unesp.knowledgeAreaMatemáticapt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
000846652.pdf
Tamanho:
1.28 MB
Formato:
Adobe Portable Document Format