Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

A pilot study for speech assessment to detect the severity of Parkinson's disease: An ensemble approach

dc.contributor.authorOliveira, Guilherme C. [UNESP]
dc.contributor.authorPah, Nemuel D.
dc.contributor.authorNgo, Quoc C.
dc.contributor.authorYoshida, Arissa [UNESP]
dc.contributor.authorGomes, Nícolas B. [UNESP]
dc.contributor.authorPapa, João P. [UNESP]
dc.contributor.authorKumar, Dinesh
dc.contributor.institutionRMIT University
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversitas Surabaya
dc.date.accessioned2025-04-29T18:48:36Z
dc.date.issued2025-02-01
dc.description.abstractBackground: Changes in voice are a symptom of Parkinson's disease and used to assess the progression of the condition. However, natural differences in the voices of people can make this challenging. Computerized binary speech classification can identify people with PD (PwPD), but its multiclass application to detect the severity of the disease remains difficult. Method: This study investigated six diadochokinetic (DDK) tasks, four features (phonation, articulation, prosody, and their fusion), and three machine learning models for four severity levels of PwPD. The four binary classifications were: (i) Normal vs Not Normal, (ii) Slight vs Not Slight, (iii) Mild vs Not Mild and (iv) Moderate vs. Not Moderate. The best task and features for each class were identified and the models were ensembled to develop a multiclass model to distinguish between Normal vs. Slight vs. Mild vs. Moderate. Results: For Normal vs Not-normal, logistic regression (LR) using the prosody from “ka-ka-ka” task, Random Forest (RF) using articulation from “petaka” for Slight vs Not Slight, RF for the fusion from “ka-ka-ka” for Mild vs Not Mild and Gradient Boosting (GB) using prosody from “ta-ta-ta” for Moderate vs Not Moderate gave the best results. Combining these using LR achieved an accuracy of 72%. Conclusion: Dividing the multiclass problem into four binary problems gives the optimum speech features for each class. This pilot study, conducted on a small public dataset, shows the potential of computerized speech analysis using DDK to evaluate the severity of Parkinson's disease voice symptoms.en
dc.description.affiliationSchool of Engineering RMIT University
dc.description.affiliationSchool of Sciences São Paulo State University
dc.description.affiliationElectrical Engineering Universitas Surabaya
dc.description.affiliationUnespSchool of Sciences São Paulo State University
dc.description.sponsorshipStiftelsen Promobilia
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCAPES: 001
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2019/07665-4
dc.description.sponsorshipIdFAPESP: 2023/14197-2
dc.description.sponsorshipIdFAPESP: 2023/14427-8
dc.description.sponsorshipIdCNPq: 308529/2021-9
dc.identifierhttp://dx.doi.org/10.1016/j.compbiomed.2024.109565
dc.identifier.citationComputers in Biology and Medicine, v. 185.
dc.identifier.doi10.1016/j.compbiomed.2024.109565
dc.identifier.issn1879-0534
dc.identifier.issn0010-4825
dc.identifier.scopus2-s2.0-85212548254
dc.identifier.urihttps://hdl.handle.net/11449/300103
dc.language.isoeng
dc.relation.ispartofComputers in Biology and Medicine
dc.sourceScopus
dc.subjectEnsemble learning
dc.subjectMDS-UPDRS-speech
dc.subjectParkinson's disease
dc.subjectSpeech analysis
dc.titleA pilot study for speech assessment to detect the severity of Parkinson's disease: An ensemble approachen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.author.orcid0000-0002-9698-2445 0000-0002-9698-2445[1]
unesp.author.orcid0000-0002-0181-3199 0000-0002-0181-3199[2]
unesp.author.orcid0000-0002-8071-5342[3]
unesp.author.orcid0000-0002-6715-4050[4]
unesp.author.orcid0000-0002-8571-8198[5]
unesp.author.orcid0000-0002-6494-7514[6]
unesp.author.orcid0000-0003-3602-4023[7]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt

Arquivos