Logo do repositório

Machine learning models for predicting prostate cancer recurrence and identifying potential molecular biomarkers

dc.contributor.authorAntunes, Maria Eliza [UNESP]
dc.contributor.authorAraújo, Thaise Gonçalves
dc.contributor.authorTill, Tatiana Martins
dc.contributor.authorPantaleão, Eliana
dc.contributor.authorMancera, Paulo F. A. [UNESP]
dc.contributor.authorOliveira, Marta Helena de
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)
dc.contributor.institutionInstituto Oswaldo Cruz (IOC)
dc.date.accessioned2025-04-29T19:13:31Z
dc.date.issued2025-01-01
dc.description.abstractProstate cancer (PCa) recurrence affects between 20% and 40% of patients, being a significant challenge for predicting clinical outcomes and increasing survival rates. Although serum PSA levels, Gleason score, and tumor staging are sensitive for detecting recurrence, they present low specificity. This study compared the performance of three supervised machine learning models, Naive Bayes (NB), Support Vector Machine (SVM), and Artificial Neural Network (ANN) for classifying PCa recurrence events using a dataset of 489 patients from The Cancer Genome Atlas (TCGA). Besides comparing the models performance, we searched for analyzing whether the incorporation of specific genes expression in the predictor set would enhance the prediction of PCa recurrence, then suggesting these genes as potential biomarkers of patient prognosis. The models showed accuracy above 60% and sensitivity above 65% in all combinations. ANN models were more consistent in their performance across different predictor sets. Notably, SVM models showed strong results in precision and specificity, particularly considering the inclusion of genes selected by feature selection (NETO2, AR, HPN, and KLK3), without compromising sensitivity. However, the relatively high standard deviations observed in some metrics indicate variability across simulations, suggesting a gap for additional studies via different datasets. These findings suggest that genes are potential biomarkers for predicting PCa recurrence in the dataset, representing a promising approach for early prognosis even before the main treatment.en
dc.description.affiliationGraduate Program in Biometrics Instituto de Biociências de Botucatu (IBB) Universidade Estadual Paulista (UNESP), São Paulo
dc.description.affiliationDepartment of Biodiversity and Biostatistics Instituto de Biociências de Botucatu (IBB) Universidade Estadual Paulista (UNESP), São Paulo
dc.description.affiliationInstitute of Biotechnology Universidade Federal de Uberlândia (UFU, Patos de Minas
dc.description.affiliationLaboratory of Clinical and Experimental Pathophysiology Instituto Oswaldo Cruz (IOC), Rio de Janeiro
dc.description.affiliationSchool of Computing Universidade Federal de Uberlândia (UFU, Patos de Minas
dc.description.affiliationInstitute of Mathematics and Statistics Universidade Federal de Uberlândia (UFU, Patos de Minas
dc.description.affiliationUnespGraduate Program in Biometrics Instituto de Biociências de Botucatu (IBB) Universidade Estadual Paulista (UNESP), São Paulo
dc.description.affiliationUnespDepartment of Biodiversity and Biostatistics Instituto de Biociências de Botucatu (IBB) Universidade Estadual Paulista (UNESP), São Paulo
dc.identifierhttp://dx.doi.org/10.3389/fonc.2025.1535091
dc.identifier.citationFrontiers in Oncology, v. 15.
dc.identifier.doi10.3389/fonc.2025.1535091
dc.identifier.issn2234-943X
dc.identifier.scopus2-s2.0-86000088241
dc.identifier.urihttps://hdl.handle.net/11449/302063
dc.language.isoeng
dc.relation.ispartofFrontiers in Oncology
dc.sourceScopus
dc.subjectartificial intelligence
dc.subjectmolecular markers
dc.subjectnext generation sequencing
dc.subjectprognostic
dc.subjectsupervised learning
dc.titleMachine learning models for predicting prostate cancer recurrence and identifying potential molecular biomarkersen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationab63624f-c491-4ac7-bd2c-767f17ac838d
relation.isOrgUnitOfPublication.latestForDiscoveryab63624f-c491-4ac7-bd2c-767f17ac838d
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Botucatupt

Arquivos