Logotipo do repositório
 

Publicação:
Application of a Fuzzy ARTMAP Neural Network for Indoor Air Quality Prediction

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Indoor air quality monitoring is an important activity to ensure continued health and well-being of citizens living, studying, and working in indoor environments. This practice has been widely developed through the application of low-cost sensors that are able to measure gas concentrations, particulate matter, and other components such as humidity and temperature that affect indoor air quality. Additionally, machine learning algorithms have been applied in the interpretation of sampled environmental data to improve the performance of monitoring systems. This paper proposes the implementation of a fuzzy ARTMAP neural network, which employs the concepts of Adaptive Resonance Theory (ART), to compute the prediction of particulate matter sampled in a domestic bedroom environment. With the application of a specialized online training architecture, the fuzzy ARTMAP network can be a promising alternative to predict particulate matter time series data modeled in sliding windows, obtaining predictions 24-hour ahead with mean absolute error (MAE) ranging here from 0.26 to 7.65.

Descrição

Palavras-chave

fuzzy ARTMAP neural network, indoor air quality, online training, particulate matter prediction

Idioma

Inglês

Como citar

Proceedings of the 2022 International Electrical Engineering Congress, iEECON 2022.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação