Logotipo do repositório
 

Publicação:
Solution to the Bessel differential equation with interactive fuzzy boundary conditions

dc.contributor.authorSánchez, Daniel Eduardo
dc.contributor.authorWasques, Vinícius Francisco [UNESP]
dc.contributor.authorEsmi, Estevão
dc.contributor.authorde Barros, Laécio Carvalho
dc.contributor.institutionUniversity Austral of Chile
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionBrazilian Center for Research in Energy and Materials
dc.date.accessioned2022-04-28T19:47:40Z
dc.date.available2022-04-28T19:47:40Z
dc.date.issued2022-02-01
dc.description.abstractIn this paper we deal with the fuzzy boundary value problem of the Bessel differential equation, whose boundary conditions are uncertain and given by linearly interactive fuzzy numbers. The Bessel differential equation can be considered in order to model wave and heat propagation problems. The fuzzy solution is obtained from the sup-J extension principle. We show that the sup-J extension provides proper fuzzy solution for the Bessel differential equation. In addition, we study the advantages of the proposed approach with others well known methods, such as the solutions based on the Zadeh extension principle and the solutions derived from the generalized Hukuhara derivative.en
dc.description.affiliationCenter of Basic Science Teaching for Engineering University Austral of Chile
dc.description.affiliationDepartment of Mathematics São Paulo State University
dc.description.affiliationDepartment of Applied Mathematics University of Campinas
dc.description.affiliationIlum School of Science Brazilian Center for Research in Energy and Materials
dc.description.affiliationUnespDepartment of Mathematics São Paulo State University
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2018/10946-2
dc.description.sponsorshipIdCNPq: 306546/2017-5
dc.identifierhttp://dx.doi.org/10.1007/s40314-021-01695-0
dc.identifier.citationComputational and Applied Mathematics, v. 41, n. 1, 2022.
dc.identifier.doi10.1007/s40314-021-01695-0
dc.identifier.issn1807-0302
dc.identifier.issn2238-3603
dc.identifier.scopus2-s2.0-85120044396
dc.identifier.urihttp://hdl.handle.net/11449/222936
dc.language.isoeng
dc.relation.isnodouble231815*
dc.relation.ispartofComputational and Applied Mathematics
dc.sourceScopus
dc.subjectBessel differential equation
dc.subjectFuzzy boundary value problem
dc.subjectgH-differentiability
dc.subjectLinearly interactive fuzzy numbers
dc.subjectSup-J extension principle
dc.subjectZadeh extension principle
dc.titleSolution to the Bessel differential equation with interactive fuzzy boundary conditionsen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0003-4660-5884[1]
unesp.author.orcid0000-0002-0965-0654[2]

Arquivos

Coleções