Logo do repositório

Collaborative Filtering Matches Decision Templates: A Practical Approach to Estimate Predictions

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Collaborative Filtering stands as an underlying strategy to reasonably deal with large-scale problems like scalability and high sparsity. In the classifier fusion context, one could benefit from adopting such a strategy to learn decision templates effectively for the sake of computation efficiency. This paper introduces a framework that explores collaborative filtering-based latent factors models for fast decision template generation, assuming it has a sparse matrix structure. Experiments conducted over five general-purpose public datasets and statistically assessed have demonstrated its feasibility for building decision templates under low sparsity conditions and datasets labeled with fewer classes. Under such conditions, the proposed framework showed competitive recognition rates, significantly reducing computational costs, particularly when distance-based classifiers are employed for ensemble learning purposes.

Descrição

Palavras-chave

Idioma

Inglês

Citação

Proceedings - 2022 35th Conference on Graphics, Patterns, and Images, SIBGRAPI 2022, p. 186-191.

Itens relacionados

Financiadores

Unidades

Item type:Unidade,
Faculdade de Ciências
FC
Campus: Bauru


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso