Logotipo do repositório
 

Publicação:
Shadow detection using object area-based and morphological filtering for very high-resolution satellite imagery of urban areas

dc.contributor.authorDa Silva, Erivaldo Antonio [UNESP]
dc.contributor.authorColnago, Marilaine [UNESP]
dc.contributor.authorAzevedo, Samara Calcado de
dc.contributor.authorNegri, Rogerio Galante [UNESP]
dc.contributor.authorCasaca, Wallace [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-08-23T12:53:44Z
dc.date.available2019-08-23T12:53:44Z
dc.date.issued2019-08-09
dc.description.abstractThe presence of shadows in remote sensing images leads to misinterpretation of objects and a wrong discrimination of the targets of interest, therefore, limiting the use of several imaging applications. An automatic area-based approach for shadow detection is proposed, which combines spatial and spectral features into a unified and flexible approach. Potential shadow-pixels candidates are identified using morphological-based operators, in particular, black-top-hat transformations as well as area injunction strategies as computed by the well-established normalized saturation-value difference index. The obtained output is a shadow mask, refined in the last step of our method in order to reduce misclassified pixels. Experiments over a large dataset formed by more than 200 scenes of very high-resolution images covering the metropolitan urban area of São Paulo city are performed, where the images are collected from the WorldView-2 (WV-2) and Pléiades-1B (PL-1B) sensors. As verified by an extensive battery of tests, the proposed method provides a good level of discrimination between shadow and nonshadow pixels, with an overall accuracy up to 94.2%, for WV-2, and 90.84%, for PL-1B. Comparative results also attested that the designed approach is very competitive against representative state-of-the-art methods and it can be used for further shadow removal-dependent applications.en
dc.description.affiliationUniv. Federal de Itajubá (Brazil)
dc.description.affiliationUniv. Estadual Paulista "Júlio de Mesquita Filho" (Brazil)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2017/03595-6
dc.description.versionPostprintpt
dc.identifier.citationJournal of Applied Remote Sensing. v. 13, n. 3, jul. 2019.
dc.identifier.doi10.1117/1.JRS.13.036506
dc.identifier.issn1931-3195pt
dc.identifier.lattes9103545004507135
dc.identifier.lattes8764225815253091
dc.identifier.lattes1997144653965010
dc.identifier.lattes8201805132981288
dc.identifier.lattes3272121223733592
dc.identifier.orcid0000-0002-7069-0479
dc.identifier.orcid0000-0003-1599-491X
dc.identifier.orcid0000-0002-4808-2362
dc.identifier.orcid0000-0002-1073-9939
dc.identifier.urihttp://hdl.handle.net/11449/183281
dc.language.isoeng
dc.publisherSociety of Photo-optical Instrumentation Engineers
dc.relation.ispartofJournal of Applied Remote Sensingen
dc.rights.accessRightsAcesso aberto
dc.subjectShadow detectionen
dc.subjectMorphological filteringen
dc.subjectHigh-resolution imageryen
dc.subjectUrban remote sensingen
dc.titleShadow detection using object area-based and morphological filtering for very high-resolution satellite imagery of urban areasen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências e Tecnologia, Presidente Prudentept
unesp.departmentCartografia - FCTpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
silva_ea_versaofinal_bpp.pdf
Tamanho:
9.04 MB
Formato:
Adobe Portable Document Format