Logo do repositório

Exploring the Capability of ALOS PALSAR L-Band Fully Polarimetric Data for Land Cover Classification in Tropical Environments

dc.contributor.authorNegri, Rogerio Galante [UNESP]
dc.contributor.authorDutra, Luciano Vieira
dc.contributor.authorFreitas, Corina da Costa
dc.contributor.authorLu, Dengsheng
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionInst Nacl Pesquisas Espaciais
dc.contributor.institutionMichigan State Univ
dc.date.accessioned2018-11-26T15:37:48Z
dc.date.available2018-11-26T15:37:48Z
dc.date.issued2016-12-01
dc.description.abstractAmong different applications using synthetic aperture radar (SAR) data, land cover classification of rain forest areas has been investigated. Previous results showed that L-band is more appropriate for such applications. However, SAR images have limited discriminability for mapping large sets of classes compared with optical imagery. The objective of this study was to carry out an analysis about the discriminative capability of an L-band fully polarimetric SAR complex image, compared to the possible subsets of polarizations in amplitude/intensity, for mapping land cover classes in Amazon regions. Two case studies using ALOS PALSAR L-band fully polarimetric images over Brazilian Amazon regions were considered. Several thematic classes, organized into scenarios, were considered for each case study. These scenarios represent distinct classification tasks with variated complexities. Performing a simultaneous analysis of different scenarios is a distinct way to assess the discriminative capability offered by a particular image. A methodology to organize thematic classes into scenarios is proposed in this study. The maximum likelihood classifier (MLC), with specific distributions for SAR data, and support vector machine were considered in this study. The iterated conditional modes algorithm was adopted to incorporate the contextual information in both methods. Considering a kappa coefficient equal to 0.8 as an acceptable minimum, the experiments show that none subset of polarization or fully polarimetric image allows performing discrimination between forest and regeneration types; single-polarized HV data provide acceptable results when the classification problem deals with the discrimination of a few classes; depending on the classification scenario, the dual-polarized HH+HV image produces similar results when compared to multipolarized (i.e., HH+HV+VV) data; in turn, if the MLC method is adopted, multipolarized data may produce close or statistically indifferent classification results compared to those produced with the use of fully polarimetric data.en
dc.description.affiliationUniv Estadual Paulista, Dept Engn Ambiental, BR-12245000 Sao Jose Dos Campos, Brazil
dc.description.affiliationInst Nacl Pesquisas Espaciais, Div Proc Imagens, BR-12227010 Sao Jose Dos Campos, Brazil
dc.description.affiliationMichigan State Univ, Ctr Global Change & Earth Observat, E Lansing, MI 48824 USA
dc.description.affiliationUnespUniv Estadual Paulista, Dept Engn Ambiental, BR-12245000 Sao Jose Dos Campos, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipUNESPTROPe
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipNSF
dc.description.sponsorshipIdFAPESP: 2014/14830-8
dc.description.sponsorshipIdFAPESP: 2007/02139-5
dc.description.sponsorshipIdUNESPTROPe: 2016/1163
dc.description.sponsorshipIdCNPq: 307666/2011-5
dc.description.sponsorshipIdNSF: BCS0850615
dc.format.extent5369-5384
dc.identifierhttp://dx.doi.org/10.1109/JSTARS.2016.2594133
dc.identifier.citationIeee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 9, n. 12, p. 5369-5384, 2016.
dc.identifier.doi10.1109/JSTARS.2016.2594133
dc.identifier.fileWOS000391468100009.pdf
dc.identifier.issn1939-1404
dc.identifier.lattes8201805132981288
dc.identifier.orcid0000-0002-4808-2362
dc.identifier.urihttp://hdl.handle.net/11449/159289
dc.identifier.wosWOS:000391468100009
dc.language.isoeng
dc.publisherIeee-inst Electrical Electronics Engineers Inc
dc.relation.ispartofIeee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing
dc.relation.ispartofsjr1,547
dc.rights.accessRightsAcesso abertopt
dc.sourceWeb of Science
dc.subjectAmazon
dc.subjectassessment
dc.subjectimage classification
dc.subjectpolarimetric synthetic aperture radar (PolSAR)
dc.subjectscenarios
dc.subjectsynthetic aperture radar (SAR)
dc.titleExploring the Capability of ALOS PALSAR L-Band Fully Polarimetric Data for Land Cover Classification in Tropical Environmentsen
dc.typeArtigopt
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee-inst Electrical Electronics Engineers Inc
dspace.entity.typePublication
unesp.author.lattes8201805132981288[1]
unesp.author.orcid0000-0002-4808-2362[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campospt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000391468100009.pdf
Tamanho:
2.5 MB
Formato:
Adobe Portable Document Format
Descrição: