Logotipo do repositório
 

Publicação:
Free actions of abelian p-groups on the n-Torus

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

In this work we make some contributions to the theory of actions of abelian p-groups on the n-Torus Tn. Set H ≅ ℤpk1 h1 × ℤpk2h2 × ⋯ × ℤpkrhr, r ≥ 1, k1 ≥ k2 ≥ ⋯ ≥ kr ≥ 1, p prime. Suppose that the group H acts freely on Tn and the induced representation on π 1(Tn) ≅ ℤn is faithful and has first Betti number b. We show that the numbers n, p, b, ki and h i (i = 1, ⋯ , r) satisfy some relation. In particular, when H ≅ ℤph, the minimum value of n is φ(p) + b when b ≥ 1. Also when H ≅ ℤpk1, × ℤp the minimum value of n is φ(pk1)+ p - 1 + 6 for 6 ≥ 1. Here φ denotes the Euler function. © 2005 University of Houston.

Descrição

Palavras-chave

Bieberbach groups, Free actions, Integral representation, p-groups

Idioma

Inglês

Como citar

Houston Journal of Mathematics, v. 31, n. 1, p. 87-102, 2005.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação