Logotipo do repositório
 

Publicação:
Faster alpha-expansion via dynamic programming and image partitioning

dc.contributor.authorFontinele, Jefferson
dc.contributor.authorMendonca, Marcelo
dc.contributor.authorRuiz, Marco
dc.contributor.authorPapa, Joao [UNESP]
dc.contributor.authorOliveira, Luciano
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Federal da Bahia (UFBA)
dc.contributor.institutionVORTEX CoLab
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T11:54:12Z
dc.date.available2021-06-25T11:54:12Z
dc.date.issued2020-01-01
dc.description.abstractImage segmentation is the task of assigning a label to each image pixel. When the number of labels is greater than two (multi-label) the segmentation can be modelled as a multi-cut problem in graphs. In the general case, finding the minimum cut in a graph is an NP-hard problem, in which improving the results concerning time and quality is a major challenge. This paper addresses the multi-label problem applied in interactive image segmentation. The proposed approach makes use of dynamic programming to initialize an alpha-expansion, thus reducing its runtime, while keeping the Dice-score measure in an interactive segmentation task. Over BSDS data set, the proposed algorithm was approximately 51.2% faster than its standard counterpart, 36.2% faster than Fast Primal-Dual (FastPD) and 10.5 times faster than quadratic pseudo-boolean optimization (QBPO) optimizers, while preserving the same segmentation quality.en
dc.description.affiliationUniv Fed Bahia, Intelligent Vis Res Lab, Salvador, BA, Brazil
dc.description.affiliationVORTEX CoLab, Porto, Portugal
dc.description.affiliationSao Paulo State Univ, Bauru, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Bauru, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdCNPq: 307550/2018-4
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2017/25908-6
dc.format.extent8
dc.identifier.citation2020 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, 8 p., 2020.
dc.identifier.issn2161-4393
dc.identifier.urihttp://hdl.handle.net/11449/209250
dc.identifier.wosWOS:000626021403067
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2020 International Joint Conference On Neural Networks (ijcnn)
dc.sourceWeb of Science
dc.subjectalpha-expansion
dc.subjectdynamic programming
dc.subjectmulti-label
dc.subjectimage segmentation
dc.titleFaster alpha-expansion via dynamic programming and image partitioningen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication

Arquivos

Coleções