Publicação: Faster alpha-expansion via dynamic programming and image partitioning
dc.contributor.author | Fontinele, Jefferson | |
dc.contributor.author | Mendonca, Marcelo | |
dc.contributor.author | Ruiz, Marco | |
dc.contributor.author | Papa, Joao [UNESP] | |
dc.contributor.author | Oliveira, Luciano | |
dc.contributor.author | IEEE | |
dc.contributor.institution | Universidade Federal da Bahia (UFBA) | |
dc.contributor.institution | VORTEX CoLab | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2021-06-25T11:54:12Z | |
dc.date.available | 2021-06-25T11:54:12Z | |
dc.date.issued | 2020-01-01 | |
dc.description.abstract | Image segmentation is the task of assigning a label to each image pixel. When the number of labels is greater than two (multi-label) the segmentation can be modelled as a multi-cut problem in graphs. In the general case, finding the minimum cut in a graph is an NP-hard problem, in which improving the results concerning time and quality is a major challenge. This paper addresses the multi-label problem applied in interactive image segmentation. The proposed approach makes use of dynamic programming to initialize an alpha-expansion, thus reducing its runtime, while keeping the Dice-score measure in an interactive segmentation task. Over BSDS data set, the proposed algorithm was approximately 51.2% faster than its standard counterpart, 36.2% faster than Fast Primal-Dual (FastPD) and 10.5 times faster than quadratic pseudo-boolean optimization (QBPO) optimizers, while preserving the same segmentation quality. | en |
dc.description.affiliation | Univ Fed Bahia, Intelligent Vis Res Lab, Salvador, BA, Brazil | |
dc.description.affiliation | VORTEX CoLab, Porto, Portugal | |
dc.description.affiliation | Sao Paulo State Univ, Bauru, SP, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Bauru, SP, Brazil | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | CNPq: 307550/2018-4 | |
dc.description.sponsorshipId | CNPq: 307066/2017-7 | |
dc.description.sponsorshipId | FAPESP: 2013/07375-0 | |
dc.description.sponsorshipId | FAPESP: 2014/12236-1 | |
dc.description.sponsorshipId | FAPESP: 2017/25908-6 | |
dc.format.extent | 8 | |
dc.identifier.citation | 2020 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, 8 p., 2020. | |
dc.identifier.issn | 2161-4393 | |
dc.identifier.uri | http://hdl.handle.net/11449/209250 | |
dc.identifier.wos | WOS:000626021403067 | |
dc.language.iso | eng | |
dc.publisher | Ieee | |
dc.relation.ispartof | 2020 International Joint Conference On Neural Networks (ijcnn) | |
dc.source | Web of Science | |
dc.subject | alpha-expansion | |
dc.subject | dynamic programming | |
dc.subject | multi-label | |
dc.subject | image segmentation | |
dc.title | Faster alpha-expansion via dynamic programming and image partitioning | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dcterms.rightsHolder | Ieee | |
dspace.entity.type | Publication |