Publicação: Prediction of Druggable Proteins Using Machine Learning and Systems Biology: A Mini-Review
dc.contributor.author | Kandoi, Gaurav | |
dc.contributor.author | Acencio, Marcio L. [UNESP] | |
dc.contributor.author | Lemke, Ney [UNESP] | |
dc.contributor.institution | Iowa State Univ | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2019-10-04T12:30:36Z | |
dc.date.available | 2019-10-04T12:30:36Z | |
dc.date.issued | 2015-12-08 | |
dc.description.abstract | The emergence of -omics technologies has allowed the collection of vast amounts of data on biological systems. Although, the pace of such collection has been exponential, the impact of these data remains small on many critical biomedical applications such as drug development. Limited resources, high costs, and low hit-to-lead ratio have led researchers to search for more cost effective methodologies. A possible alternative is to incorporate computational methods of potential drug target prediction early during drug discovery workflow. Computational methods based on systems approaches have the advantage of taking into account the global properties of a molecule not limited to its sequence, structure or function. Machine learning techniques are powerful tools that can extract relevant information from massive and noisy data sets. In recent years the scientific community has explored the combined power of these fields to propose increasingly accurate and low cost methods to propose interesting drug targets. In this mini-review, we describe promising approaches based on the simultaneous use of systems biology and machine learning to access gene and protein druggability. Moreover, we discuss the state-of-the-art of this emerging and interdisciplinary field, discussing data sources, algorithms and the performance of the different methodologies. Finally, we indicate interesting avenues of research and some remaining open challenges. | en |
dc.description.affiliation | Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA | |
dc.description.affiliation | UNESP Sao Paulo State Univ, Inst Biosci Botucatu, Dept Phys & Biophys, Botucatu, SP, Brazil | |
dc.description.affiliationUnesp | UNESP Sao Paulo State Univ, Inst Biosci Botucatu, Dept Phys & Biophys, Botucatu, SP, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorshipId | FAPESP: 2013/02018-4 | |
dc.format.extent | 7 | |
dc.identifier | http://dx.doi.org/10.3339/fphys.2015.00366 | |
dc.identifier.citation | Frontiers In Physiology. Lausanne: Frontiers Media Sa, v. 6, 7 p., 2015. | |
dc.identifier.doi | 10.3339/fphys.2015.00366 | |
dc.identifier.issn | 1664-042X | |
dc.identifier.lattes | 7977035910952141 | |
dc.identifier.uri | http://hdl.handle.net/11449/184855 | |
dc.identifier.wos | WOS:000443518700001 | |
dc.language.iso | eng | |
dc.publisher | Frontiers Media Sa | |
dc.relation.ispartof | Frontiers In Physiology | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | druggability | |
dc.subject | machine learning | |
dc.subject | systems biology | |
dc.subject | review | |
dc.subject | drug targets | |
dc.subject | sequence properties | |
dc.subject | structural properties | |
dc.subject | network topology | |
dc.title | Prediction of Druggable Proteins Using Machine Learning and Systems Biology: A Mini-Review | en |
dc.type | Resenha | |
dcterms.rightsHolder | Frontiers Media Sa | |
dspace.entity.type | Publication | |
unesp.author.lattes | 7977035910952141 | |
unesp.author.orcid | 0000-0003-0559-9481[1] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Botucatu | pt |
unesp.department | Física e Biofísica - IBB | pt |