Publicação: Geometric Singular Perturbation Theory for Systems with Symmetry
dc.contributor.author | Cardin, Pedro Toniol [UNESP] | |
dc.contributor.author | Teixeira, Marco Antonio | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.date.accessioned | 2020-12-12T01:26:50Z | |
dc.date.available | 2020-12-12T01:26:50Z | |
dc.date.issued | 2020-01-01 | |
dc.description.abstract | In this paper we focus on a class of symmetric vector fields in the context of singularly perturbed fast-slow dynamical systems. Our main question is to know how symmetry properties of a dynamical system are affected by singular perturbations. In addition, our approach uses tools in geometric singular perturbation theory [8], which address the persistence of normally hyperbolic compact manifolds. We analyse the persistence of such symmetry properties when the singular perturbation parameter ε is positive and small enough, and study the existing relations between symmetries of the singularly perturbed system and symmetries of the limiting systems, which are obtained from the limit ε→ 0 in the fast and slow time scales. This approach is applied to a number of examples. | en |
dc.description.affiliation | Faculdade de Engenharia Universidade Estadual Paulista (UNESP) | |
dc.description.affiliation | Instituto de Matemática Estatística e Computação Científica Universidade Estadual de Campinas (UNICAMP) | |
dc.description.affiliationUnesp | Faculdade de Engenharia Universidade Estadual Paulista (UNESP) | |
dc.identifier | http://dx.doi.org/10.1007/s10884-020-09855-2 | |
dc.identifier.citation | Journal of Dynamics and Differential Equations. | |
dc.identifier.doi | 10.1007/s10884-020-09855-2 | |
dc.identifier.issn | 1572-9222 | |
dc.identifier.issn | 1040-7294 | |
dc.identifier.scopus | 2-s2.0-85086154075 | |
dc.identifier.uri | http://hdl.handle.net/11449/198962 | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of Dynamics and Differential Equations | |
dc.source | Scopus | |
dc.subject | Fast-slow systems | |
dc.subject | Reversible vector fields | |
dc.subject | Symmetries | |
dc.title | Geometric Singular Perturbation Theory for Systems with Symmetry | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0002-8723-8200[1] |