Logo do repositório
 

Scale matters: Spatial resolution impacts tropical leaf phenology characterized by multi-source satellite remote sensing with an ecological-constrained deep learning model

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Accurate monitoring of tropical leaf phenology, such as the leaf-on/off status, at both individual and ecosystem scales is essential for understanding and modelling tropical forest carbon and water cycles, and their sensitivity to climate change. The discrepancy between tree-crown size and pixel size (i.e., spatial resolution) across orbital sensors can affect the capability of cross-scale phenology monitoring, an aspect that remains understudied. To examine the impact of spatial resolution on tropical leaf phenology monitoring, we applied a spectral index-guided, ecologically constrained autoencoder (IG-ECAE) to automatically generate a deciduousness metric (i.e., percentage of upper canopy area that is leaf-off status within an image pixel) from simulated VIS-NIR PlanetScope data at a range of resolutions from 3 m to 30 m, as well as from VIS-NIR data of three satellite platforms with the same range of spatial resolutions (3 m PlanetScope, 10 m Sentinel-2, and 30 m Landsat-8). We compared the deciduousness metrics derived from the simulated and satellite data to corresponding measurements derived from WorldView-2 (three sites) and local phenocams (four sites) at five tropical forest sites. Our results revealed that: (1) the IG-ECAE model captured the amount of deciduousness across spatial scales, with the highest accuracy obtained from PlanetScope, followed by Sentinel-2 and Landsat-8; (2) coarser spatial resolutions led to lower accuracies in tropical deciduousness monitoring, as demonstrated by both simulated PlanetScope data across various spatial resolutions and real satellite data; and (3) while not as accurate in capturing fine-scale tropical phenological diversity as PlanetScope, Sentinel-2 provided satisfactory monitoring of deciduousness seasonality at the ecosystem level consistently across all phenocam sites, whereas Landsat-8 failed to do so. Collectively, this study provides a robust assessment for advancing cross-scale tropical leaf phenology monitoring with potential for extension to pan-tropical regions and highlights the impact of spatial resolution on such monitoring efforts.

Descrição

Palavras-chave

Deep learning, Ecosystem deciduousness, Leaf phenology, Phenological diversity, Satellite remote sensing, Spatial resolution, Spectral unmixing, Tropical forest

Idioma

Inglês

Citação

Remote Sensing of Environment, v. 304.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação