Logo do repositório

Application of Sentinel-1 and Sentinel-2 data via Machine Learning for Land Use and Land Cover Mapping in the Ibirapuitã Environmental Protection Area, Pampa Biome, using the Random Forest Classification Algorithm

dc.contributor.authorMaidana de Andrade, Marcus Vinicius
dc.contributor.authorSilva Guimarães, Ulisses [UNESP]
dc.contributor.authorMora Kuplich, Tatiana
dc.contributor.authorda Silva Narvaes, Igor
dc.contributor.institutionUniversidade Federal de Santa Catarina (UFSC)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionInstituto Nacional de Pesquisas Espaciais (INPE)
dc.date.accessioned2025-04-29T20:09:06Z
dc.date.issued2025-02-17
dc.description.abstractThe joint approach of optical sensor images and synthetic aperture radar (SAR) has been effective in land cover mapping. In this study, conducted in the Ibirapuitã environmental protection area, machine learning techniques were employed to classify land use and cover. The Random Forest (RF) algorithm was applied using statistical attributes from Sentinel-2 optical image products, such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Soil-Adjusted Vegetation Index (SAVI), along addition to attributes from images Sentinel-1 SAR images, including backscattering coefficient, polarimetric parameters, and interferometric data. The results demonstrated the robustness of the RF classifier, with average values of Overall Accuracy, Kappa Coefficient, and F1-Score reaching 96.89%, 0.9495, and 0.8909, respectively. The combination of SAR attributes and optical data allowed for better discrimination in certain classes, such as urban areas, wetlands, and agriculture. The proposed methodology achieved high accuracy and precision in land use and cover classification, except when using isolated Sentinel-1 data. Notably, the inclusion of interferometric coherence resulted in the best performance among the proposed scenarios.en
dc.description.affiliationPrograma de Pós-Graduação em Desastres Naturais (PPGDN) Universidade Federal de Santa Catarina (UFSC)
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho (UNESP) Centro Gestor e Operacional do Sistema de Proteção da Amazônia (CENSIPAM)
dc.description.affiliationInstituto Nacional de Pesquisas Espaciais (INPE)
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho (UNESP) Centro Gestor e Operacional do Sistema de Proteção da Amazônia (CENSIPAM)
dc.format.extent3715-3735
dc.identifierhttp://dx.doi.org/10.26848/rbgf.v18.2.p3715-3735
dc.identifier.citationRevista Brasileira de Geografia Fisica, v. 18, n. 2, p. 3715-3735, 2025.
dc.identifier.doi10.26848/rbgf.v18.2.p3715-3735
dc.identifier.issn1984-2295
dc.identifier.scopus2-s2.0-85218942724
dc.identifier.urihttps://hdl.handle.net/11449/307368
dc.language.isopor
dc.relation.ispartofRevista Brasileira de Geografia Fisica
dc.sourceScopus
dc.subjectMachine Learning
dc.subjectPampa Biome
dc.subjectRandom Forest
dc.subjectSentinel-1 and 2 synergy
dc.titleApplication of Sentinel-1 and Sentinel-2 data via Machine Learning for Land Use and Land Cover Mapping in the Ibirapuitã Environmental Protection Area, Pampa Biome, using the Random Forest Classification Algorithmen
dc.titleAplicação de dados Sentinel 1 e 2 via Machine Learning para Mapeamento do Uso e Cobertura da Terra na Área de Proteção Ambiental do Ibirapuitã, Bioma Pampa utilizando o algoritmo de classificação Random Forestpt
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0003-2170-4341[2]
unesp.author.orcid0000-0003-0657-4024[3]
unesp.author.orcid0000-0002-9950-895X[4]

Arquivos

Coleções