Logo do repositório
 

Análise da incerteza na representação de classes de cobertura do solo urbano resultantes da aplicação de uma rede neural artificial

dc.contributor.authorBoschi, Letícia Sabo [UNESP]
dc.contributor.authorGalo, Maria de Lourdes Bueno Trindade [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:22:23Z
dc.date.available2014-05-27T11:22:23Z
dc.date.issued2007-01-01
dc.description.abstractThe great diversity of materials that characterizes the urban environment determines a structure of mixed classes in a classification of multiespectral images. In that sense, it is important to define an appropriate classification system using a non parametric classifier, that allows incorporating non spectral (such as texture) data to the process. They also allow analyzing the uncertainty associated to each class from the output alues of the network calculated in relation to each class. Considering these properties, an experiment was carried out. This experiment consisted in the application of an Artificial Neural Network aiming at the classification of the urban land cover of Presidente Prudente and the analysis of the uncertainty in the representation of the mapped thematic classes. The results showed that it is possible to discriminate the variations in the urban land cover through the application of an Artificial Neural Network. It was also possible to visualize the spatial variation of the uncertainty in the attribution of classes of urban land cover from the generated representations. The class characterized by a defined pattern as intermediary related to the impermeability of the urban soil presented larger ambiguity degree and, therefore, larger mixture.en
dc.description.affiliationUniversidade Estadual Paulista Programa de Pós-Graduação em Ciências Cartográficas, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP
dc.description.affiliationUniversidade Estadual Paulista Faculdade de Ciência e Tecnologia Depto de Cartografia, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP
dc.description.affiliationUnespUniversidade Estadual Paulista Programa de Pós-Graduação em Ciências Cartográficas, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP
dc.description.affiliationUnespUniversidade Estadual Paulista Faculdade de Ciência e Tecnologia Depto de Cartografia, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente, SP
dc.format.extent22-41
dc.identifierhttp://ojs.c3sl.ufpr.br/ojs/index.php/bcg/article/view/8243
dc.identifier.citationBoletim de Ciencias Geodesicas, v. 13, n. 1, p. 22-41, 2007.
dc.identifier.file2-s2.0-36549066884.pdf
dc.identifier.issn1413-4853
dc.identifier.lattes1647318644299561
dc.identifier.lattes9070577381094673
dc.identifier.lattes894715226925471
dc.identifier.scopus2-s2.0-36549066884
dc.identifier.urihttp://hdl.handle.net/11449/69494
dc.language.isopor
dc.relation.ispartofBoletim de Ciências Geodésicas
dc.relation.ispartofsjr0,188
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectArtificial Neural Networks
dc.subjectClassification of urban environment
dc.subjectRemote Sensing
dc.subjectUncertainty in the classification
dc.subjectartificial neural network
dc.subjectimage classification
dc.subjectland cover
dc.subjectspatial variation
dc.subjectspectral analysis
dc.subjecttexture
dc.subjectthematic mapping
dc.subjectuncertainty analysis
dc.subjectvisualization
dc.titleAnálise da incerteza na representação de classes de cobertura do solo urbano resultantes da aplicação de uma rede neural artificialpt
dc.title.alternativeUncertainty analysis in the representation of the urban land cover classes through the application of artificial neural networken
dc.typeArtigo
dcterms.licensehttp://www.scielo.br/revistas/bcg/paboutj.htm
dspace.entity.typePublication
unesp.advisor.lattes9070577381094673
unesp.advisor.lattes894715226925471
unesp.author.lattes1647318644299561
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências e Tecnologia, Presidente Prudentept
unesp.departmentCartografia - FCTpt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-36549066884.pdf
Tamanho:
497.05 KB
Formato:
Adobe Portable Document Format