Logotipo do repositório
 

Publicação:
A Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses Detection

dc.contributor.authorFernandes, Silas E. N.
dc.contributor.authorPereira, Danillo R.
dc.contributor.authorRamos, Caio C. O.
dc.contributor.authorSouza, Andre N. [UNESP]
dc.contributor.authorGastaldello, Danilo S. [UNESP]
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniv Western Sao Paulo
dc.contributor.institutionCatarinense Fed Inst
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-04T12:37:26Z
dc.date.available2019-10-04T12:37:26Z
dc.date.issued2019-05-01
dc.description.abstractProbabilistic-driven classification techniques extend the role of traditional approaches that output labels (usually integer numbers) only. Such techniques are more fruitful when dealing with problems where one is not interested in recognition/identification only, but also into monitoring the behavior of consumers and/ or machines, for instance. Therefore, by means of probability estimates, one can take decisions to work better in a number of scenarios. In this paper, we propose a probabilistic-based optimum-path forest (OPF) classifier to handle the problem of non-technical losses (NTL) detection in power distribution systems. The proposed approach is compared against naive OPF, probabilistic support vector machines, and logistic regression, showing promising results for both NTL identification and in the context of general-purpose applications.en
dc.description.affiliationUniv Fed Sao Carlos, Dept Comp, BR-13565 Sao Carlos, SP, Brazil
dc.description.affiliationUniv Western Sao Paulo, Inst Informat, BR-19065 Presidente Prudente, Brazil
dc.description.affiliationCatarinense Fed Inst, Dept Elect Engn, BR-89163356 Rio Do Sul, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Elect Engn, BR-17033360 Bauru, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Elect Engn, BR-17033360 Bauru, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2016/19403-6
dc.description.sponsorshipIdFAPESP: 2017/02286-0
dc.format.extent3226-3235
dc.identifierhttp://dx.doi.org/10.1109/TSG.2018.2821765
dc.identifier.citationIeee Transactions On Smart Grid. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 10, n. 3, p. 3226-3235, 2019.
dc.identifier.doi10.1109/TSG.2018.2821765
dc.identifier.issn1949-3053
dc.identifier.urihttp://hdl.handle.net/11449/185671
dc.identifier.wosWOS:000466603800077
dc.language.isoeng
dc.publisherIeee-inst Electrical Electronics Engineers Inc
dc.relation.ispartofIeee Transactions On Smart Grid
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectOptimum-path forest
dc.subjectprobabilistic classification
dc.subjectnon-technical losses
dc.titleA Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses Detectionen
dc.typeArtigo
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee-inst Electrical Electronics Engineers Inc
dspace.entity.typePublication
unesp.author.lattes8212775960494686[4]
unesp.author.orcid0000-0002-8617-5404[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt
unesp.departmentEngenharia Elétrica - FEBpt

Arquivos