Logotipo do repositório
 

Publicação:
Enhanced Hydrophobicity in Nanocellulose-Based Materials: Toward Green Wearable Devices

dc.contributor.authorFingolo, Ana C. [UNESP]
dc.contributor.authorde Morais, Vitória B.
dc.contributor.authorCosta, Saionara V.
dc.contributor.authorCorrêa, Cátia C.
dc.contributor.authorLodi, Beatriz
dc.contributor.authorSanthiago, Murilo
dc.contributor.authorBernardes, Juliana S.
dc.contributor.authorBufon, Carlos C. B. [UNESP]
dc.contributor.institutionBrazilian Center for Research in Energy and Materials (CNPEM)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionFederal University of ABC
dc.date.accessioned2022-04-28T19:45:47Z
dc.date.available2022-04-28T19:45:47Z
dc.date.issued2021-09-20
dc.description.abstractNanocellulose is a promising material for fabricating green, biocompatible, flexible, and foldable devices. One of the main issues of using nanocellulose as a fundamental component for wearable electronics is the influence of environmental conditions on it. The water adsorption promotes the swelling of nanopaper substrates, which directly affects the devices’ electrical properties prepared on/with it. Here, plant-based nanocellulose substrates, and ink composites deposited on them, are chemically modified using hexamethyldisilazane to enhance the system’s hydrophobicity. After the treatment, the electrical properties of the devices exhibit stable operation under humidity levels around 95%. Such stability demonstrates that the hexamethyldisilazane modification substantially suppresses the water adsorption on fundamental device structures, namely, substrate plus conducting ink. These results attest to the robustness necessary to use nanocellulose as a key material in wearable devices such as electronic skins and tattoos and contribute to the worldwide efforts to create biodegradable devices engineered in a more deterministic fashion.en
dc.description.affiliationBrazilian Nanotechnology National Laboratory (LNNano) Brazilian Center for Research in Energy and Materials (CNPEM)
dc.description.affiliationProgram in Materials Science and Technology (POSMAT) São Paulo State University (UNESP)
dc.description.affiliationCenter for Natural and Human Sciences Federal University of ABC
dc.description.affiliationUnespProgram in Materials Science and Technology (POSMAT) São Paulo State University (UNESP)
dc.format.extent6682-6689
dc.identifierhttp://dx.doi.org/10.1021/acsabm.1c00317
dc.identifier.citationACS Applied Bio Materials, v. 4, n. 9, p. 6682-6689, 2021.
dc.identifier.doi10.1021/acsabm.1c00317
dc.identifier.issn2576-6422
dc.identifier.scopus2-s2.0-85116847973
dc.identifier.urihttp://hdl.handle.net/11449/222611
dc.language.isoeng
dc.relation.ispartofACS Applied Bio Materials
dc.sourceScopus
dc.subjectelectrical properties
dc.subjectelectronic skin
dc.subjectgreen electronics
dc.subjectnanocellulose
dc.subjectnanopaper
dc.subjectwater adsorption
dc.subjectwearable electronics
dc.titleEnhanced Hydrophobicity in Nanocellulose-Based Materials: Toward Green Wearable Devicesen
dc.typeResenhapt
dspace.entity.typePublication
unesp.author.orcid0000-0002-9146-9677 0000-0002-9146-9677[6]
unesp.author.orcid0000-0002-2758-0880 0000-0002-2758-0880[7]
unesp.author.orcid0000-0002-1493-8118 0000-0002-1493-8118[8]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt

Arquivos