Publicação:
Improving Hazardous Gas Detection Behavior with Palladium Decorated SnO2 Nanobelts Networks

dc.contributor.authorAraújo, Estácio P. de
dc.contributor.authorPaiva, Murilo P.
dc.contributor.authorMoisés, Lucas A.
dc.contributor.authorSanto, Gabriel S. do Espírito [UNESP]
dc.contributor.authorBlanco, Kate C.
dc.contributor.authorChiquito, Adenilson J.
dc.contributor.authorAmorim, Cleber A. [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionInstituto de Ciência e Tecnologia-Câmpus de Sorocaba
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2023-07-29T13:16:42Z
dc.date.available2023-07-29T13:16:42Z
dc.date.issued2023-05-01
dc.description.abstractTransparent Conductive Oxides (TCOs) have been widely used as sensors for various hazardous gases. Among the most studied TCOs is SnO2, due to tin being an abundant material in nature, and therefore being accessible for moldable-like nanobelts. Sensors based on SnO2 nanobelts are generally quantified according to the interaction of the atmosphere with its surface, changing its conductance. The present study reports on the fabrication of a nanobelt-based SnO2 gas sensor, in which electrical contacts to nanobelts are self-assembled, and thus the sensors do not need any expensive and complicated fabrication processes. The nanobelts were grown using the vapor–solid–liquid (VLS) growth mechanism with gold as the catalytic site. The electrical contacts were defined using testing probes, thus the device is considered ready after the growth process. The sensorial characteristics of the devices were tested for the detection of CO and CO2 gases at temperatures from 25 to 75 °C, with and without palladium nanoparticle deposition in a wide concentration range of 40–1360 ppm. The results showed an improvement in the relative response, response time, and recovery, both with increasing temperature and with surface decoration using Pd nanoparticles. These features make this class of sensors important candidates for CO and CO2 detection for human health.en
dc.description.affiliationNanOLaB Departamento de Física Universidade Federal de São Carlos—UFSCar, Rodovia Washington Luiz, Km 235 Monjolinho, CP 676, SP
dc.description.affiliationPrograma de Pós-Graduação em Engenharia Elétrica (Mestrado) Instituto de Ciência e Tecnologia-Câmpus de Sorocaba, SP
dc.description.affiliationSchool of Sciences and Engineering São Paulo State University (Unesp), Av. Domingos da Costa Lopes, 780 Jardim Itaipu, SP
dc.description.affiliationSão Carlos Institute of Physics University of São Paulo, P.O. Box 369, SP
dc.description.affiliationUnespSchool of Sciences and Engineering São Paulo State University (Unesp), Av. Domingos da Costa Lopes, 780 Jardim Itaipu, SP
dc.identifierhttp://dx.doi.org/10.3390/s23104783
dc.identifier.citationSensors, v. 23, n. 10, 2023.
dc.identifier.doi10.3390/s23104783
dc.identifier.issn1424-8220
dc.identifier.scopus2-s2.0-85160411667
dc.identifier.urihttp://hdl.handle.net/11449/247462
dc.language.isoeng
dc.relation.ispartofSensors
dc.sourceScopus
dc.subjectcarbon dioxide
dc.subjectcarbon monoxide
dc.subjectCO
dc.subjectCO2
dc.subjectgas sensor
dc.subjectnanobelts
dc.subjecttin oxide
dc.titleImproving Hazardous Gas Detection Behavior with Palladium Decorated SnO2 Nanobelts Networksen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0001-9018-8075[3]
unesp.author.orcid0000-0003-4123-2740[7]

Arquivos

Coleções