Unsupervised burned areas detection using multitemporal synthetic aperture radar data
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Climate change is a critical concern that has been greatly affected by human activities, resulting in a rise in greenhouse gas emissions. Its effects have far-reaching impacts on both living and non-living components of ecosystems, leading to alarming outcomes such as a surge in the frequency and severity of fires. This paper presents a data-driven framework that unifies time series of remote sensing images, statistical modeling, and unsupervised classification for mapping fire-damaged areas. To validate the proposed methodology, multiple remote sensing images acquired by the Sentinel-1 satellite between August and October 2021 were collected and analyzed in two case studies comprising Brazilian biomes affected by burns. Our results demonstrate that the proposed approach outperforms another method evaluated in terms of precision metrics and visual adherence. Our methodology achieves the highest overall accuracy of 58.15% and the highest F1 score of 0.72, both of which are higher than the other method. These findings suggest that our approach is more effective in detecting burned areas and may have practical applications in other environmental issues such as landslides, flooding, and deforestation.
Descrição
Palavras-chave
burned areas, remote sensing, statistical modeling, synthetic aperture radar, unsupervised approach
Idioma
Inglês
Citação
Journal of Applied Remote Sensing, v. 18, n. 1, 2024.




