A Social-Spider Optimization Approach for Support Vector Machines Parameters Tuning
| dc.contributor.author | Pereira, Danillo R. | |
| dc.contributor.author | Pazoti, Mario A. | |
| dc.contributor.author | Pereira, Luis A. M. [UNESP] | |
| dc.contributor.author | Papa, Joao Paulo [UNESP] | |
| dc.contributor.author | IEEE | |
| dc.contributor.institution | Univ Western Sao Paulo UNOESTE | |
| dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
| dc.date.accessioned | 2019-10-04T20:36:23Z | |
| dc.date.available | 2019-10-04T20:36:23Z | |
| dc.date.issued | 2014-01-01 | |
| dc.description.abstract | The choice of hyper-parameters in Support Vector Machines (SVM)-based learning is a crucial task, since different values may degrade its performance, as well as can increase the computational burden. In this paper, we introduce a recently developed nature-inspired optimization algorithm to find out suitable values for SVM kernel mapping named Social-Spider Optimization (SSO). We compare the results obtained by SSO against with a Grid-Search, Particle Swarm Optimization and Harmonic Search. Statistical evaluation has showed SSO can outperform the compared techniques for some sort of kernels and datasets. | en |
| dc.description.affiliation | Univ Western Sao Paulo UNOESTE, Informat Fac Presidente Prudente, Sao Paulo, Brazil | |
| dc.description.affiliation | Sao Paulo State Univ, Dept Comp, Sao Paulo, Brazil | |
| dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Comp, Sao Paulo, Brazil | |
| dc.format.extent | 8-13 | |
| dc.identifier.citation | 2014 Ieee Symposium On Swarm Intelligence (sis). New York: Ieee, p. 8-13, 2014. | |
| dc.identifier.uri | http://hdl.handle.net/11449/186400 | |
| dc.identifier.wos | WOS:000364912700003 | |
| dc.language.iso | eng | |
| dc.publisher | Ieee | |
| dc.relation.ispartof | 2014 Ieee Symposium On Swarm Intelligence (sis) | |
| dc.rights.accessRights | Acesso aberto | pt |
| dc.source | Web of Science | |
| dc.subject | Support Vector Machines | |
| dc.subject | Social-Spider Optimization | |
| dc.subject | Evolutionary Computing | |
| dc.title | A Social-Spider Optimization Approach for Support Vector Machines Parameters Tuning | en |
| dc.type | Trabalho apresentado em evento | pt |
| dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
| dcterms.rightsHolder | Ieee | |
| dspace.entity.type | Publication | |
| relation.isDepartmentOfPublication | 872c0bbb-bf84-404e-9ca7-f87a0fe94e58 | |
| relation.isDepartmentOfPublication.latestForDiscovery | 872c0bbb-bf84-404e-9ca7-f87a0fe94e58 | |
| relation.isOrgUnitOfPublication | aef1f5df-a00f-45f4-b366-6926b097829b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | aef1f5df-a00f-45f4-b366-6926b097829b | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
| unesp.department | Computação - FC | pt |

