Publicação: Bifurcations, relaxation time, and critical exponents in a dissipative or conservative Fermi model
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
We investigated the time evolution for the stationary state at different bifurcations of a dissipative version of the Fermi-Ulam accelerator model. For local bifurcations, as period-doubling bifurcations, the convergence to the inactive state is made using a homogeneous and generalized function at the bifurcation parameter. It leads to a set of three critical exponents that are universal for such bifurcation. Near bifurcation, an exponential decay describes convergence whose relaxation time is characterized by a power law. For global bifurcation, as noticed for a boundary crisis, where a chaotic transient suddenly replaces a chaotic attractor after a tiny change of control parameters, the survival probability is described by an exponential decay whose transient time is given by a power law.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Chaos, v. 33, n. 2, 2023.