Logotipo do repositório
 

Publicação:
Bifurcations, relaxation time, and critical exponents in a dissipative or conservative Fermi model

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

We investigated the time evolution for the stationary state at different bifurcations of a dissipative version of the Fermi-Ulam accelerator model. For local bifurcations, as period-doubling bifurcations, the convergence to the inactive state is made using a homogeneous and generalized function at the bifurcation parameter. It leads to a set of three critical exponents that are universal for such bifurcation. Near bifurcation, an exponential decay describes convergence whose relaxation time is characterized by a power law. For global bifurcation, as noticed for a boundary crisis, where a chaotic transient suddenly replaces a chaotic attractor after a tiny change of control parameters, the survival probability is described by an exponential decay whose transient time is given by a power law.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Chaos, v. 33, n. 2, 2023.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação