Logo do repositório
 

Comprehensive Characterization of Titania Nanotubes Fabricated on Ti-Nb Alloys: Surface Topography, Structure, Physicomechanical Behavior, and a Cell Culture Assay

dc.contributor.authorChernozem, Roman V.
dc.contributor.authorSurmeneva, Maria A.
dc.contributor.authorIgnatov, Viktor P.
dc.contributor.authorPeltek, Oleksii O.
dc.contributor.authorGoncharenko, Alexander A.
dc.contributor.authorMuslimov, Albert R.
dc.contributor.authorTimin, Alexander S.
dc.contributor.authorTyurin, Alexander I.
dc.contributor.authorIvanov, Yurii F.
dc.contributor.authorGrandini, Carlos R. [UNESP]
dc.contributor.authorSurmenev, Roman A.
dc.contributor.institutionNatl Res Tomsk Polytech Univ
dc.contributor.institutionPeter Great St Petersburg Polytech Univ
dc.contributor.institutionFirst IP Pavlov State Med Univ St Petersburg
dc.contributor.institutionGR Derzhavin Tambov State Univ
dc.contributor.institutionIHCE
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-11T11:00:49Z
dc.date.available2020-12-11T11:00:49Z
dc.date.issued2020-03-01
dc.description.abstractIn this study, hybrid composites based on beta-alloy Ti-xNb and oxide nanotubes (NTs) have been successfully prepared. NTs of different sizes were grown on Ti-Nb substrates with different Nb contents (5, 25, and 50 wt %) via electrochemical anodization at 30 and 60 V. Scanning electron microscopy imaging revealed that vertically aligned nanotubular structures form on the surface of Ti-Nb alloy substrates and influence Nb content in alloys based on NT length. X-ray diffraction analysis confirmed the formation of the anodized TiO2 layer and revealed several phases as the Nb content increased, starting with alpha' for low Nb content (5 wt %), the martensite alpha '' for intermediate Nb content (25 wt %), and the beta phase for the highest Nb content (50 wt %). Nanoindentation testing was used to evaluate the changes in mechanical properties of oxide NTs grown on Ti-Nb alloys with different compositions. NT arrays showed wide variations in Young's modulus and hardness depending upon the anodization voltage and the Nb content. The hardness and Young's modulus strongly correlated with NT morphology and structure. The highly dense morphology formed at a lower anodization voltage results in increased elastic modulus and hardness values compared with the surfaces prepared at higher anodization voltages. The nanostructurization of Ti-Nb surface substrates favored improved surface properties for the enhanced adhesion and proliferation of human mesenchymal stem cells (hMSCs). In vitro adhesion, spreading, and proliferation of hMSCs revealed the improved surface properties of the NTs prepared at an anodization voltage of 30 V compared with the NTs prepared at 60 V. Thus it can be concluded that NTs with diameters of similar to 50 nm (at 30 V) are more favorable for cell adhesion and growth compared with NTs with diameters of 80 +/- 20 nm (at 60 V). The surfaces of Ti-25Nb substrates anodized at 30 V promoted enhanced cell growth, as the further increase in Nb content in Ti-Nb substrate (Ti-50Nb) led to reduced cell proliferation. The application of NTs on Ti-Nb substrates leads to significant reductions in mechanical properties compared with those on the Ti-Nb alloy and improves cell adhesion and proliferation, which is vitally important for successful application in regenerative medicine.en
dc.description.affiliationNatl Res Tomsk Polytech Univ, Phys Mat Sci & Composite Mat Ctr, Tomsk 634050, Russia
dc.description.affiliationNatl Res Tomsk Polytech Univ, Kizhner Res Ctr, Tomsk 634050, Russia
dc.description.affiliationPeter Great St Petersburg Polytech Univ, RASA Ctr, St Petersburg 195251, Russia
dc.description.affiliationFirst IP Pavlov State Med Univ St Petersburg, St Petersburg 197022, Russia
dc.description.affiliationGR Derzhavin Tambov State Univ, Res Inst Nanotechnol & Nanomat, Tambov 392000, Russia
dc.description.affiliationIHCE, Tomsk 634055, Russia
dc.description.affiliationUniv Estadual Paulista, Dept Fes, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Fes, BR-17033360 Bauru, SP, Brazil
dc.description.sponsorshipRussian Science Foundation
dc.description.sponsorshipRFBR (Russian Foundation for Basic Research)
dc.description.sponsorshipTomsk Polytechnic University Competitiveness Enhancement Program
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdRussian Science Foundation: 15-13-00043
dc.description.sponsorshipIdRFBR (Russian Foundation for Basic Research): 18-33-20076
dc.description.sponsorshipIdRFBR (Russian Foundation for Basic Research): 18-29-17047
dc.description.sponsorshipIdFAPESP: 2015/50.280-5
dc.description.sponsorshipIdCNPq: 308.204/2017-4
dc.format.extent1487-1499
dc.identifierhttp://dx.doi.org/10.1021/acsbiomaterials.9b01857
dc.identifier.citationAcs Biomaterials Science & Engineering. Washington: Amer Chemical Soc, v. 6, n. 3, p. 1487-1499, 2020.
dc.identifier.doi10.1021/acsbiomaterials.9b01857
dc.identifier.issn2373-9878
dc.identifier.urihttp://hdl.handle.net/11449/197697
dc.identifier.wosWOS:000519150300017
dc.language.isoeng
dc.publisherAmer Chemical Soc
dc.relation.ispartofAcs Biomaterials Science & Engineering
dc.sourceWeb of Science
dc.subjectimplant
dc.subjectsurface modification
dc.subjectTiNb alloy
dc.subjectanodization
dc.subjectnanotubes
dc.titleComprehensive Characterization of Titania Nanotubes Fabricated on Ti-Nb Alloys: Surface Topography, Structure, Physicomechanical Behavior, and a Cell Culture Assayen
dc.typeArtigo
dcterms.rightsHolderAmer Chemical Soc
dspace.entity.typePublication
unesp.author.lattes2949983867418338[10]
unesp.author.orcid0000-0002-3336-309X[10]
unesp.departmentFísica - FCpt

Arquivos