Logotipo do repositório
 

Publicação:
Dropout through Extended Association Rule Netwoks: A Complementary View

dc.contributor.authorDall'Agnol, Maicon [UNESP]
dc.contributor.authorSouza, Leandro Rondado de [UNESP]
dc.contributor.authorPadua, Renan de
dc.contributor.authorCarvalho, Veronica Oliveira de [UNESP]
dc.contributor.authorRezende, Solange Oliveira
dc.contributor.authorLane, H. C.
dc.contributor.authorZvacek, S.
dc.contributor.authorUhomoibhi, J.
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2022-11-30T13:48:01Z
dc.date.available2022-11-30T13:48:01Z
dc.date.issued2020-01-01
dc.description.abstractDropout is a critical problem that has been studied by data mining methods. The most widely used algorithm in this context is C4.5. However, the understanding of the reasons why a student dropout is a result of its representation. As C4.5 is a greedy algorithm, it is difficult to visualize, for example, items that are dominants and determinants with respect to a specific class. An alternative is to use association rules (ARs), since they exploit the search space more broadly. However, in the dropout context, few works use them. (Padua et al., 2018) proposed an approach, named ExARN, that structures, prunes and analyzes a set of ARs to build candidate hypotheses. Considering the above, the goal of this work is to treat the dropout problem through ExARN as it provides a complementary view to what is commonly used in the literature, i.e., classification through C4.5. As contributions we have: (a) complementary views are important and, therefore, should be used more often when the focus is to understand the domain, not only classify; (b) the use of ARs through ExARN may reveal interesting correlations that may help to understand the problem of dropping out.en
dc.description.affiliationUniv Estadual Paulista Unesp, Inst Geociencias & Ciencias Exatas, Rio Claro, Brazil
dc.description.affiliationUniv Sao Paulo, Inst Ciencias Matemat & Comp, Sao Carlos, Brazil
dc.description.affiliationUnespUniv Estadual Paulista Unesp, Inst Geociencias & Ciencias Exatas, Rio Claro, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2019/049232
dc.format.extent89-96
dc.identifierhttp://dx.doi.org/10.5220/0009354300890096
dc.identifier.citationProceedings Of The 12th International Conference On Computer Supported Education (csedu), Vol 1. Setubal: Scitepress, p. 89-96, 2020.
dc.identifier.doi10.5220/0009354300890096
dc.identifier.issn2184-5026
dc.identifier.urihttp://hdl.handle.net/11449/237899
dc.identifier.wosWOS:000777617400008
dc.language.isoeng
dc.publisherScitepress
dc.relation.ispartofProceedings Of The 12th International Conference On Computer Supported Education (csedu), Vol 1
dc.sourceWeb of Science
dc.subjectDropout
dc.subjectAssociation Rules
dc.subjectNetwork
dc.subjectC4.5
dc.titleDropout through Extended Association Rule Netwoks: A Complementary Viewen
dc.typeTrabalho apresentado em evento
dcterms.rightsHolderScitepress
dspace.entity.typePublication
unesp.author.orcid0000-0003-1172-4859[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentEstatística, Matemática Aplicada e Computação - IGCEpt

Arquivos