Logo do repositório
 

Applying a genetic neuro-model reference adaptive controller in drilling optimization

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

Motivated by rising drilling operation costs, the oil industry has shown a trend toward real-time measurements and control. In this scenario, drilling control becomes a challenging problem for the industry, especially due to the difficulty associated with parameters modeling. One of the drillbit performance evaluators, the Rate Of Penetration (ROP), has been used as a drilling control parameter. However, relationships between operational variables affecting the ROP are complex and not easily modeled. This work presents a neuro-genetic adaptive controller to treat this problem. It is based on an auto-regressive with extra input signals, or ARX model and on a Genetic Algorithm (GA) to control the ROP. © [2006] IEEE.

Descrição

Palavras-chave

Idioma

Inglês

Citação

World Oil, v. 228, n. 10, p. 29-36, 2007.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação