Logo do repositório

The Blood Concentration of Metallic Nanoparticles Is Related to Cognitive Performance in People with Multiple Sclerosis: An Exploratory Analysis

dc.contributor.authorde Oliveira, Marcela [UNESP]
dc.contributor.authorSantinelli, Felipe Balistieri
dc.contributor.authorLisboa-Filho, Paulo Noronha [UNESP]
dc.contributor.authorBarbieri, Fabio Augusto [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionHasselt University
dc.date.accessioned2025-04-29T18:58:27Z
dc.date.issued2023-07-01
dc.description.abstractThe imbalance in the concentration of metallic nanoparticles has been demonstrated to play an important role in multiple sclerosis (MS), which may impact cognition. Biomarkers are needed to provide insights into the pathogenesis and diagnosis of MS. They can be used to gain a better understanding of cognitive decline in people with MS (pwMS). In this study, we investigated the relationship between the blood concentration of metallic nanoparticles (blood nanoparticles) and cognitive performance in pwMS. First, four mL blood samples, clinical characteristics, and cognitive performance were obtained from 21 pwMS. All participants had relapse–remitting MS, with a score of ≤4.5 points in the expanded disability status scale. They were relapse-free in the three previous months from the day of collection and had no orthopedic, muscular, cardiac, and cerebellar diseases. We quantified the following metallic nanoparticles: aluminum, chromium, copper, iron, magnesium, nickel, zinc, and total concentration. Cognitive performance was measured by mini-mental state examination (MMSE) and the symbol digit modalities test (SDMT). Pearson’s and Spearman’s correlation coefficients and stepwise linear regression were calculated to assess the relationship between cognitive performance and blood nanoparticles. We found that better performance in SDMT and MMSE was related to higher total blood nanoparticles (r = 0.40; p < 0.05). Also, better performance in cognitive processing speed and attention (SDMT) and mental state (MMSE) were related to higher blood iron (r = 0.44; p < 0.03) and zinc concentrations (r = 0.41; p < 0.05), respectively. The other metallic nanoparticles (aluminum, chromium, copper, magnesium, and nickel) did not show a significant relationship with the cognitive parameters (p > 0.05). Linear regression estimated a significant association between blood iron concentration and SDMT performance. In conclusion, blood nanoparticles are related to cognitive performance in pwMS. Our findings suggest that the blood concentration of metallic nanoparticles, particularly the iron concentration, is a promising biomarker for monitoring cognitive impairment in pwMS.en
dc.description.affiliationMedicine and Nanotechnology Applied Physics Group (GFAMN) Department of Physics and Meteorology School of Sciences São Paulo University (Unesp), SP
dc.description.affiliationREVAL Rehabilitation Research Center Faculty of Rehabilitation Sciences Hasselt University
dc.description.affiliationHuman Movement Research Laboratory (MOVI-LAB) Department of Physical Education School of Sciences São Paulo State University (Unesp), SP
dc.description.affiliationUnespMedicine and Nanotechnology Applied Physics Group (GFAMN) Department of Physics and Meteorology School of Sciences São Paulo University (Unesp), SP
dc.description.affiliationUnespHuman Movement Research Laboratory (MOVI-LAB) Department of Physical Education School of Sciences São Paulo State University (Unesp), SP
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2017/20032-5
dc.description.sponsorshipIdFAPESP: 2018/18078-0
dc.identifierhttp://dx.doi.org/10.3390/biomedicines11071819
dc.identifier.citationBiomedicines, v. 11, n. 7, 2023.
dc.identifier.doi10.3390/biomedicines11071819
dc.identifier.issn2227-9059
dc.identifier.scopus2-s2.0-85175104927
dc.identifier.urihttps://hdl.handle.net/11449/301508
dc.language.isoeng
dc.relation.ispartofBiomedicines
dc.sourceScopus
dc.subjectattention
dc.subjectbiomarkers
dc.subjectblood
dc.subjectcognition
dc.subjectmemory
dc.subjectmetal
dc.subjectmultiple sclerosis
dc.subjectnanoparticles
dc.subjectneuropsychological tests
dc.subjectprocessing speed of information
dc.titleThe Blood Concentration of Metallic Nanoparticles Is Related to Cognitive Performance in People with Multiple Sclerosis: An Exploratory Analysisen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.author.orcid0000-0002-1164-4018[2]
unesp.author.orcid0000-0002-7734-4069[3]
unesp.author.orcid0000-0002-3678-8456[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt

Arquivos