Logo do repositório

Ionospheric scintillation simulation based on neural networks

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Thereis a demand for the development of GNSS positioning processing techniques that are more tolerant to the effects of the low latitude ionosphere (in particular, scintillation). The possibility of simulating scintillating channels supports the development of more sophisticated test benches and receivers. This paper proposes a neural network-based simulator of ionospheric amplitude scintillation. This synthetic scintillation simulator uses autoencoders and generative adversarial networks (GANs) to generate time series that follow the statistical characteristics of the \alpha-\mu fading model. A part of the proposed network tries to create a synthetic signal, similar to the field data. The proposed neural network was trained and validated with scintillation data acquired in Sao Jose dos Campos, Brazil, in February 2012 and November 2014. The results of the proposed method show that the simulator yields the correct values of the scintillation index, and the estimated fading coefficients are also close to the specified values. These aspects show that this kind of approach can be promising in the simulation of fading channels. Future improvements of the model are also be discussed.

Descrição

Palavras-chave

fading channels, GNSS, neural network, scintillation, simulation

Idioma

Inglês

Citação

EUROCON 2023 - 20th International Conference on Smart Technologies, Proceedings, p. 84-88.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso