Microwave-assisted hydrothermal synthesis and gas sensing properties of ZnSn(OH)6, ZnSnO3, and Zn2SnO4/SnO2 hierarchical nano-/hetero-structures
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Although semiconducting metal oxide sensors present reasonable sensitivity, an improved lower detection limit and/or selectivity would allow broadening real-time monitoring applications. This work reports the growth mechanism and gas sensing performance of zinc tin oxide-based structures synthesised via a microwave-assisted hydrothermal route. The synthesised materials were characterised by X-ray diffraction (XRD), Raman and Fourier-transform infrared (FTIR) spectroscopy, scanning and scanning transmission electron microscopy (SEM and STEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and nitrogen adsorption/desorption experiments. Gas sensor measurements showed that ZnSnO3 presents an outstanding lower detection limit to nitrogen dioxide (NO2), in which a 10-fold increase in electrical resistance is expected in the presence of 1 ppb NO2 at an operating temperature of 150 ˚C. Moreover, the Zn2SnO4/SnO2 heterostructure exhibited superior selectivity to NO2 relative to hydrogen (H2) and carbon monoxide (CO), exhibiting a sensor response ∼1500 times higher for the oxidising gas. Hence, it is demonstrated that nanostructures’ growth engineering can realise lower detection limits and ultra-selective high-performance gas sensor devices through a greater surface area and enhanced contact potential barriers.
Descrição
Palavras-chave
Hydrothermal synthesis, Metal oxide gas sensor, Nitrogen dioxide sensing, Tin oxide, Zinc tin hydroxide, Zinc tin oxide
Idioma
Inglês
Citação
Sensors and Actuators A: Physical, v. 374.





