Publicação:
Nature-Inspired Framework for Hyperspectral Band Selection

dc.contributor.authorNakamura, Rodrigo Y. M. [UNESP]
dc.contributor.authorGarcia Fonseca, Leila Maria
dc.contributor.authorSantos, Jefersson Alex dos
dc.contributor.authorTorres, Ricardo da S.
dc.contributor.authorYang, Xin-She
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionInstituto Nacional de Pesquisas Espaciais (INPE)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionMiddlesex Univ
dc.date.accessioned2014-12-03T13:11:45Z
dc.date.available2014-12-03T13:11:45Z
dc.date.issued2014-04-01
dc.description.abstractAlthough hyperspectral images acquired by on-board satellites provide information from a wide range of wavelengths in the spectrum, the obtained information is usually highly correlated. This paper proposes a novel framework to reduce the computation cost for large amounts of data based on the efficiency of the optimum-path forest (OPF) classifier and the power of metaheuristic algorithms to solve combinatorial optimizations. Simulations on two public data sets have shown that the proposed framework can indeed improve the effectiveness of the OPF and considerably reduce data storage costs.en
dc.description.affiliationSao Paulo State Univ, Dept Comp, BR-17001970 Bauru, Brazil
dc.description.affiliationINPE Natl Inst Space Res, Image Proc Div, BR-12227001 Sao Jose Dos Campos, Brazil
dc.description.affiliationUniv Estadual Campinas, Inst Comp, BR-13083852 Campinas, SP, Brazil
dc.description.affiliationMiddlesex Univ, Sch Sci & Technol, London NW4 4BT, England
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, BR-17001970 Bauru, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipAMD
dc.description.sponsorshipMicrosoft
dc.description.sponsorshipIdFAPESP: 12/18768-0
dc.description.sponsorshipIdFAPESP: 11/14058-5
dc.description.sponsorshipIdFAPESP: 09/16206-1
dc.description.sponsorshipIdFAPESP: 09/18438-7
dc.description.sponsorshipIdFAPESP: 08/58112-0
dc.description.sponsorshipIdFAPESP: 08/58528-2
dc.description.sponsorshipIdCNPq: 303182/2011-3
dc.description.sponsorshipIdCNPq: 306580/2012-8
dc.description.sponsorshipIdCNPq: 484254/2012-0
dc.format.extent2126-2137
dc.identifierhttp://dx.doi.org/10.1109/TGRS.2013.2258351
dc.identifier.citationIeee Transactions On Geoscience And Remote Sensing. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 52, n. 4, p. 2126-2137, 2014.
dc.identifier.doi10.1109/TGRS.2013.2258351
dc.identifier.issn0196-2892
dc.identifier.lattes9039182932747194
dc.identifier.urihttp://hdl.handle.net/11449/113507
dc.identifier.wosWOS:000329527000018
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartofIEEE Transactions on Geoscience and Remote Sensing
dc.relation.ispartofjcr4.662
dc.relation.ispartofsjr2,649
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectEvolutionary computationen
dc.subjectheuristic algorithmsen
dc.subjecthyperspectral imagingen
dc.subjectimage classificationen
dc.subjectpattern recognitionen
dc.titleNature-Inspired Framework for Hyperspectral Band Selectionen
dc.typeArtigo
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee-inst Electrical Electronics Engineers Inc
dspace.entity.typePublication
unesp.author.lattes9039182932747194
unesp.author.orcid0000-0002-6494-7514[6]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos